《高等数学习题解析(下)》是高等院校数学课程《高等数学(下)》(ISBN: 978-7-302-47530-9)一书相配套的习题解析。《高等数学习题解析(下)》严格按照配套教材的章节的顺序,以节为单位进行编写。每小节内容有知识点概括和习题解答。知识点概括精炼、全面,帮助学生加深教材所学知识,明确学习重点和难点。习题解答对较难的习题给出题前分析、详尽的解答步骤和题后注释,还对某些典型题的分析方法和技巧作了详细说明,切实帮助学生检验教材内容的掌握程度,查漏补缺。《高等数学习题解析(下)》期望能够通过知识点概括帮助学生理清知识的脉络,加深读者对新知识的理解和掌握;通过习题解答为学生提供分析问题和解决问题的方法,从而更好地学习高等数学的基本知识和理论,掌握相应的方法和技巧。
本书的宗旨是帮助读者全面、系统地复习高等数学的内容,深入理解基本概念和基本理论,学习和掌握解题方法及解题技巧;追求的目标是通过对解题方法和技巧的分析,使读者能举一反三、触类旁通。本书每章均有一些读者想掌握、易掌握但尚未掌握或根本上不知道的方法和技巧,例如,一些类型的极限的教求法;有关微积分中值定理命题的证明;定积分、重积分的有关命题的证明;不等式的证明;无穷级数求和的方法;常微分方程中积分因子的求法等,均介绍了读者见所未见的新方法和新技巧。按当前考试特点及命题的发展趋势修订的本书,将更适合广大读者,尤其是考研应试者的需要。本书可作为本科生、大专生、电大、夜大、职大生的参考书,也可作为青年教师和科技工作者的参考书。
本书的宗旨是帮助读者全面、系统地复习高等数学的内容,深入理解基本概念和基本理论,学习和掌握解题方法及解题技巧;追求的目标是通过对解题方法和技巧的分析,使读者能举一反三、触类旁通。本书每章均有一些读者想掌握、易掌握但尚未掌握或根本上不知道的方法和技巧,例如,一些类型的极限的教求法;有关微积分中值定理命题的证明;定积分、重积分的有关命题的证明;不等式的证明;无穷级数求和的方法;常微分方程中积分因子的求法等,均介绍了读者见所未见的新方法和新技巧。按当前考试特点及命题的发展趋势修订的本书,将更适合广大读者,尤其是考研应试者的需要。本书可作为本科生、大专生、电大、夜大、职大生的参考书,也可作为青年教师和科技工作者的参考书。
逻辑学是研究思维形式的结构及其规律以及认识事物的简单逻辑方法的科学。逻辑学作为思维科学,与人的智能的培养与提高联系极其密切。逻辑学具有全人类性、基础性、工具性与规范性,被称为人类成员都得学习与掌握的“思维的语法”。学习逻辑学,有助于培养和提高认知自学能力,有助于培养与提高理论素养,有助于培养和提高科学研究能力,有助于培养和提高思维素质。逻辑学在智力开发、思维素质的培养与提高方面,具有其他学科与课程不可替代的重要作用。当今世界,逻辑学已渗透到许多学科领域,诸如哲学、心理学、计算机科学、语言学、物理学、法学、伦理学等。许多国家,尤其是欧美发达国家对逻辑的研究和普及倾注了巨大的人力、财力、物力。20世纪80年代,联合国教科文组织正式将逻辑学列为数、理、化、天、地、生同等重要的基础学科。
逻辑学是研究思维形式的结构及其规律以及认识事物的简单逻辑方法的科学。逻辑学作为思维科学,与人的智能的培养与提高联系极其密切。逻辑学具有全人类性、基础性、工具性与规范性,被称为人类成员都得学习与掌握的“思维的语法”。学习逻辑学,有助于培养和提高认知自学能力,有助于培养与提高理论素养,有助于培养和提高科学研究能力,有助于培养和提高思维素质。逻辑学在智力开发、思维素质的培养与提高方面,具有其他学科与课程不可替代的重要作用。当今世界,逻辑学已渗透到许多学科领域,诸如哲学、心理学、计算机科学、语言学、物理学、法学、伦理学等。许多国家,尤其是欧美发达国家对逻辑的研究和普及倾注了巨大的人力、财力、物力。20世纪80年代,联合国教科文组织正式将逻辑学列为数、理、化、天、地、生同等重要的基础学科。
高等数学典型例题与解法分上、下册出版。下册内容包括:多元微积分及其应用、无穷级数、常微分方程、应试模拟。每章分基本要求、内容提要、典型例题与方法、综合应用与提高、同步练习与综合练习、单元测试A、B卷。本书力求:对大纲要求有适合性,例题解法有典型性,练习题有代表性,对本科生练习和应试有有效性(考研生亦如此)。本科生、考研生分别使用同步、综合练习与单元测试A、B卷、模拟试卷。适合于理工科、财经管理学科等本科生学习与考研复习使用。