邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
本书依据*《高等数学课程教学基本要求》(经管、文科类)编写,可满足经管、文科类本科各专业对高等数学的教学需求。 本书分上、下两册出版,上册包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用等内容,打8号的内容可根据不同专业选学,书末附有积分表,习题答案与提示。 本教材强调从实际应用的需要(实例)出发,加强数学思想和数学概念与社会经济实际问题的结合,淡化了深奥的数学理论,强化了几何说明,结构简练、合理。每章都有本章小结、复习题和自测题。此外,本书还配有辅导教材《高等数学学习指导与习题解答》(经管、文科类)。 本教材可供高等院校经管、文科类本科专业的学生学习使用,也可供高校教师和科技工作者使用。
本书根据国家示范性高职院校建筑类专业的教学要求编写而成,体现了“必需、够用为度”的原则,内容包括三角函数、一元函数微积分、矩阵和线性方程组以及概率统计初步。 本书可供三年制高职高专建筑类专业使用,也可供其他专业选用。
进入21世纪以来,我国的高等教育有了突飞猛进的发展,教材建设也取得了长足的进步,目前,科学技术日新月异,随着计算机的广泛应用及数学软件的普及,我们已全面进入信息时代,这些无疑对基础课教材,特别是数学课教材提出了更新、更严格的要求。正是在这样一种形势下,我们在总结多年本科数学教学经验、探索本科数学教学发展动向、分析国内外同类教材发展趋势的基础上,编写出这本适合于理工类本科生各专业使用的高等数学教材。 本书依据*制订的“高等数学课程教学基本要求”(文中简称“基本要求”)编写而成,遵循重视基本概念、培养基本能力、力求贴近实际应用的原则,并充分考虑了高等数学课程教学时数减少的趋势。本书具有以下特色: ,突出高等数学的基本思想和基本方法。突出基本思想和基本方法的目的在于让学生在学习过程
本书包括了线性代数与概率论两篇.线性代数部分的主要内容有:n阶行列式,矩阵,向量与向量组,线性方程组,矩阵的特征值、特征向量与n阶矩阵的对角化,二次型等.概率论部分的主要内容有:*事件及其概率,一维*变量及其分布,二维*变量及其分布,*变量的数字特征等. 本书可作为函授、远程等成人业余高等教育(工科)的教学用书,也可作为工科院校工程数学的参考用书.
大学数学是高等院校量工、经管等各类学生必修的基础课,又是“考研”的统考科目,所以一直深受学生们的重视。作为多年工作在大学数学教学线的教师,我们深知学生们对数学课的重视程度,以及对一本好的数学辅导为的渴求,对于刚刚走入大学校门的新生来说,一是对大学自主学习的学习方式不太适应,二是大学数学概念的抽象和运算的繁杂,往往使他们感到力不从心,正是出于这些考虑,我们以东北大学出版社出的“21世纪高等学校本科数学规划教材”为蓝本,编写出与其配套的学习辅导书,但同时这套数学辅导书又是从各自系、内容出发,相对独立,因此也可以供使用其他教材的学生使用,编写这套数学辅导书的目的是让学生熟悉自主学习思路,尽快完成学习方法和思维方式的转变,对所学课程的学习进行全面指导,力求取得“用时少,成绩好”之效果
本书是高职高专各专业通用的高等数学基础课程教材。全书分必修篇(1~6章)和选修篇(7~9章及含*号的内容)两大部分。必修篇编入了数学建模和实例,重点讲解一元函数的微积分及其应用;选修篇包括二元函数的微积分及其应用、常微分方程简介和数学实验等内容。书中每节都配有适量的练习与思考题,每章又配有相对难度大点或综合应用的习题。每章的后还安排了“阅读材料”,既可以作为课余的休闲阅读,又丰富了对应知识点的应用,为读者提供了轻松第二课堂。后一章是与必修内容相适应的数学实验——MATLAB的使用。为便于读者查找,书后还设有附录,内容包括初等数学及高等数学中常用的公式、图形和参考答案。 本书坚持“以应用为目的,以必须够用为度”的原则,既保留了教材由浅入深、循序渐进的传统特点,又大刀阔斧地删除了许多理论推
本书是普通高等教育精品规划教材。该书作为高等理工科院校本科生高等数学课程的辅导书,其内容(除了傅氏级数之外)基本上包含了大学本科的高等数学内容,并且各部分的内容(除级数部分)均以计算解答题为主。 全书内容全面,重点突出,共分为24个专题讲解。 本书适合于一般本科院校和高职高专院校学生学习高等数学课程参考,对于初学高等数学课程作练习题有困难的学生有所帮助。
本书是编者在多年为高校文科专业学生开设高等数学的教学实践基础上编写的.考虑到教学对象的特殊性,本书力求以通俗的语言,由浅人深地向读者介绍高等数学基础的知识.本书以中学数学为起点,主要介绍微积分、线性代数、概率与统计等高等数学的基础知识。微积分部分共分6章,分别介绍函数与极限、导数及其应用以及一元函数的积分学.线性代数部分共分3章,分别介绍行列式、矩阵和线性方程组。概率统计初步共分3章,分别介绍数理统计的基本方法、概率的定义和计算概率常用的方法、*变量及其数字特征。
进入21世纪以来,我国的高等教育有了突飞猛进的发展,教材建设也取得了长足的进步。目前,科学技术日新月异,随着计算机的广泛应用及数学软件的普及,我们已全面进入信息时代,这些无疑对基础课教材,特别是数学课教材提出了更新、更严格的要求。正是在这样一种形势下,我们在总结多年本科数学教学经验、探索本科数学教学发展动向、分析国内外同类教材发展趋势的基础上,编写出这本适合于经管类本科生各专业使用的高等数学教材。 本书依据*制订的“高等数学课程教学基本要求”(文中简称“基本要求”)编写而成,遵循重视基本概念、培养基本能力、力求贴近实际应用的原则,并充分考虑了高等数学课程教学时数减少的趋势,本书具有以下特色: ,突出高等数学的基本思想和基本方法。突出基本思想和基本方法的目的在于让学生在学习过程
本书是与毕燕丽主编的《高等数学》教材配套的高等数学课程学习指导书。 本书意在指导学生如何学习高等数学;怎样理解知识点,解惑答疑;总结归纳解题方法。适当增加练习题量,以补充教材题量小的缺憾,促使学生通过做题掌握解题方法,提高对《高等数学》教材的学习水平,也可以满足想继续深造(专升本、自考)学生复习的需要。 本书内容包括:函数与极限、导数与微分、导数的应用、不定积分、定积分、定积分的应用举例、常微分方程、多元函数微分学、二重积分、级数、拉普拉斯变换、矩阵及其应用、概率论初步、练习题参考答案。
本书有下述三方面的特点: 1.全面,教材中所有的习题,包括所有带*的习题,均有解答。这主要是考虑到地域、学校之间的差别和学生基础不尽相同,各种问题可能都会遇到,加之学生对做过的习题需全部核对,所以对所有习题均给出解答,以满足学生的不同需求。 2.详尽。这里主要是指解题过程详尽,使学生对解题过程有一个全面、清晰的了解,以加强对概念的理解和方法的掌握;详尽的另一方面是对有些习题给出多种解法。 3.指导性。解题过程中特别注意对解题方法的叙述,对一些难题还给出解题思路及提示,并举一反三,意在使学生能理解概念、熟悉路径、掌握方法。结合作者多年的教学经验,对一些典型题,指出易犯的错误,并剖析原因,避免以后犯类似错误。还特别介绍了一些方便快捷的解题方法与技巧,并力争给出简解题方法。
本书以大学高等代数的学习内容为依据,以*研究生考试大纲为依据安排章节。每章按题型分类,每个题型中包含题型特点及解题指导。为方便不同学习阶段的读者使用本书,编写过程中每章内容分为两部分:*部分为基本题型,作为在校生学习以上课程时的同步学习指导使用,其特点为所选均为基本题目;第二部分为综合提高题型,一方面可供读者在本课程结束时复习、总结使用,另一方面为备考硕士研究生入学考试的读者提供复习的工具。为加深读者学习的印象、提高学习效果,题中除包括解题过程外,还有思路探索、方法点击,进一步对题目进行分析、总结。
《华职教育·2014年全国高等教育自学考试创新型同步辅导系列:高等数学(工本)同步辅导·同步训练》是紧扣全国高等教育自学考试《高等数学(工本)》*考试大纲及自考委指定教材,系统研究历年考试真题,并在结合多年教辅经验的基础上编写而成的,希望能够对广大学员有所帮助。 书正文每章节均分为五部分:教材知识架构、本章考纲解读、考点考频分析、重难点知识串讲(含真题链接)、知识强化训练(含参考答案及解析)。下面将逐一进行介绍。
《高等数学》是以国家*高等工科数学课程教学指导委员会制定的《高等数学课程教学基本要求》为标准,以培养学生的专业素质为目的,充分吸收多年来教学实践和教学改革成果而编写的。 本教材分上、下两册。上册内容包括一元函数、极限与连续、一元函数微分学及其应用、一元函数积分学及其应用、常微分方程。下册内容包括向量代数、空间解析几何、多元函数及其微分法、重积分、曲线积分与曲面积分、无穷级数等。 本教材内容全面、结构严谨、推理严密、详略得当,例题丰富,可读性、应用性强,习题足量,难易适度,简化证明,注重数学知识的应用性,可作为普通高等院校“高等数学”课程的教材,也可供工程技术人员或参加国家自学考试及学历文凭考试的读者作为自学用书或参考书。
本书与同济大学数学系主编的《高等数学》(第六版)配套,它汇集了编者几十年的丰富经验,将一些典型例题及解题方法与技巧融入书中,本书将会成为读者学习《高等数学》的良师益友。 本书章节的划分和内容设置与同济大学的《高等数学》(第六版)完全一致。每节内容由三部分组成:一、主要内容归纳;二、经典例题解析及解题方法总结;三、教材习题解答。每章后还有两部分内容:总习题解答及自测题与参考答案。
本书是根据复旦大学李大潜院士主持的*教改项目“将数学建模思想和方法融入大学数学主干课程教学中的研究与试验”以及天津大学“十五”重点教材改革立项的要求,并结合天津大学多年来数学教学改革的经验与体会而编写的。本书既保留了微积分基本内容,同时也注意了当前科技发展与计算机广泛应用的新形势,在各章均增加“数学实验”内容,并在有关章节中介绍数学建模的思想与有关应用,在练习题中增加了一些实际应用题。 本书分为上下册出版,上册包括函数与极限、导数与微分、导数的应用、不定积分、定积分、空间解析几何与向量代数共6章,下册包括多元函数微分学、重积分、曲线积分与曲面积分、级数、微分方程共5章。各章节后附有适量练习题,书后附有练习题参考答案。