本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书共有4卷,作者是世界公认的分析学大师。这套4卷集的经典名著以广义函数论为框架,论述了与线性偏微分方程理论有关的经典分析和现代分析的核心内容。第2卷内容主要包括:微分方程解的存在性和近似性、微分方程解的内部正则性、柯西问题的混合边值问题、恒定强度的微分算子、散射理论、线性偏数方程的解析函数理论和卷积型方程等。
《高等代数探究性课题精编》包括43个高等代数探究性课题,这些课题背景丰富(素材取自于外有关资料),结论深刻有趣,题材涉及高等代数的方方面面,对各课题不过分强调技巧难度,都可以从不同层次进行探究。对每个课题都先简要阐明其背景、目的和意义,然后提出本课题的“中心问题”,让读者围绕某个中心问题自主探究。书中采用问题链的形式,给读者以启发、引导,帮助他们明晰探究思路。每个问题都附有详尽的解答,各课题中还设置探究题,以丰富探究性的层次。通过对课题的探究,可以让读者尝试数学研究的过程,获得数学创造的体验,提高不断深造的能力和创造能力,并拓宽知识视野,加深对数学本质的理解。
丛书(第6辑):代数多项式》介绍了怎样应用对称条件解方程组及不等式,所有这些问题的解答都使用基于对称多项式定理的公式。 《 丛书(第6辑):代数多项式》适合于准备参加竞赛的中学生、师范学院的学生和数学教师及数学爱好者阅读。