本书提出了无限维动力系统、偏微分方程、数学物理交叉学科尖端领域的处理某些议题的新方法。书中的部分着重介绍了作者在达布变换和同宿轨道以及建立可积偏微分方程梅尔尼科夫积分方面取得的成果。第二部分则专注第二作者将达布变换应用于物理领域的工作。本书的特点在于作者及合作者发展的用达布变换建立可积系统中同宿轨道、梅尔尼科夫积分及梅尔尼科夫向量的崭新方法。可积系统(也叫孤立子方程)是有限维可积哈密顿系统在无限维的对应物,而上述所说的崭新方法所展示的是无限维相空间结构。本书可供数学、物理及其他相关学科领域的高年级本科生,研究生及该领域的专家参考。
石焕南编著的《受控理论与解析不等式》内容提要:受控理论,亦称控制不等式理论(majorizationtheory),是一门有着广泛应用并日趋兴旺的数学学科,本书介绍该理论的基本内容及其新推广(包括Schur几何凸函数,Schur调和凸函数,Schur幂凸函数等),重点介绍受控理论在解析不等式(包括平均值不等式,积分不等式,序列不等式,对称函数不等式等)方面的应用,本书包含了外学者(主要是学者)近年来所获得的大量研究成果。《受控理论与解析不等式》适合数学研究人员,大学数学系师生,中学数学教师及数学爱好者。
《复分析》(原书第3版)的诞生已是半个世纪之前的事情,但是,深贯其中的严谨的学术风范以及针对不同时代所做出的切实改进使得它愈久弥新,成为复分析领域历经考验的一本经典教材。《复分析》(原书第3版)作者在数学分析领域声名卓著,多次荣获国际大奖,这也是《复分析》(原书第3版)始终保持旺盛生命力的原因之一。《复分析》(原书第3版)从现代数学的观点介绍复分析的基本知识与常用工具,全书共分为8章,主要包括:复数、复函数、作为映射的解析函数、复积分、级数与乘积展开、共形映射,软件克雷问题、椭圆函数以及全局解析函数,此外,大部分章节后都有练习,便于学生掌握书中内容。
本书是大学数学的内容、方法与技巧丛书之一,对常微分方程的主要内容、基本方法与常用技巧进行了全面的讨论与分析,用大量的例题对所讨论的内容与方法作了演示与论证。全书的内容包括初等积分法、基本定理、线性微分方程、线性微分方程组、定性与稳定性概念及一阶偏微分方程。本书用简明易懂、通俗流畅的语言深人浅出地诠释概念、解析疑难、演绎方法与投巧,帮助读者理解与熟悉常微分方程的基本概念与理论,培养读者运用常微分方程方法分析问题与解决问题的能力,本书与教材同步,在方法与技巧上略有拓宽与提高,是大学生、工程技术人员与经济分析人员的、读之有益的一本好书。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定律之间的相互对偶