“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
本书包含七章。章从Lebesgue测度和Lebesgue积分出发介绍抽象测度和抽象积分,以及可测函数的连续性;第二章介绍LP空问及其可分性和对偶空间,以及用连续函数逼近LP空间元素;第三章介绍Hilbert空间上线性变换的表示,Hilbert空间中的规范正交系;作为例子,本章还介绍了三角级数,它是逼近论、小波分析的基础,另外,作为Riesz表示定理的应用之一,这里还介绍了广义测度的有关知识(这部分可作为选讲内容);第四章主要讨论n维欧氏空间上的Fourier变换的概念及基本性质,以及Fourier变换在偏微分方程中的应用;第五章微分学是将数学分析中函数的微分概念推广到映射和测度中去,分别介绍了映射的导数、偏导数及高阶导数和测度的导数;第六章介绍Banach空间中的五大定理;最后一章介绍了广义函数。
费铭岗、邓志亮编的《实变函数与泛函分析(下普通高等教育十三五规划教材)》分上、下两册。本册系统地讲述了线性泛函分析的基本思想和理论,分五章:距离线性空间与赋范线性空间;Banach空间上的有界线性算子
本书主要以李庆扬、王能超、易大义三位教授编写的《数值分析》(清华·第四版)的章节为顺序,以其内容为基础而编写的。共分九章,每章设计了五个板块: 一、重点内容提要,列出基本概念、重要内容简介,重要定理和公式,突出考点的核心知识。 二、知识结构图,用框图形式列出各知识点间的有机联系。 三、常考题型及典型精解,从多年教学经验出发,列出了常见考研题型和课程结业考试试题,并编入一些典型题,给出了详细解答。其中不少题目是对相应内容的进一步补充。 四、学习效果测试题,这一部分是为检查读者的学习效果和应试能力而设计的。通过测试,读者可以进一步加深对所学内容的理解,增强解题应试能力。 五、课后习题全解 对《数值分析》(清华·第四版)的课后习题作了详细解答。 本书从指导课程教学、学习和考
本书是为正在学习数学分析(微积分)的读者,正在复习数学分析(微积分)准备报考研究生的读者以及从事这方面教学工作的年轻教师编写的。 遵循现行教材的顺序,本书全面、系统地总结和归纳了数学分析问题的基本类型,每种类型的基本方法,对每种方法先概括要点,再选取典型而有相当难度的例题,逐层剖析,分类讲解。然后分别配备相应的一套练习。旨在拓宽基础,启发思路,培养学生分析问题和解决问题的能力,作为教材的补充和延深。此外,对现行教材中比较薄弱的部分,如半连续、凸函数、不等式、等度连续等内容,作了适当扩充。 全书共分7章、33节、220个条目、1200个问题,包括一元函数极限、连续、微分、积分、级数;多元函数极限、连续、微分、积分。 本书大量采用全国部分高校历届硕士研究生数学分析入学试题、苏
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
《数学分析中的问题、方法与实践》由陈汝栋主编,分问题篇、方法篇和实践篇3部分。问题篇包含了数学分析中概念理解、方法使用中的254个问题的错误解析,有些问题还是比较深刻的;方法篇包含了数学分析中的常用方法和技巧,分证明方法和计算方法分别予以提炼和总结,并配以精选的例子;实践篇包含数学分析中的部分理论、方法在实际问题中的应用和近年来部分研究生招生的数学分析试题,特别是最后针对近年来各种教材习题解答的泛滥,按照高等教育出版社出版的复旦大学《数学分析》第三版的顺序,重新选择并改编了习题,以克服同学们抄习题解答的不良习惯。我们也期望任何人不要为本习题集出版解答书籍,以便为同学们学好数学分析提供一个良好的环境。《数学分析中的问题、方法与实践》可作为高等学校理科数学系学生学习数学分析的参考书和
本书主要以李庆扬、王能超、易大义三位教授编写的《数值分析》(清华·第四版)的章节为顺序,以其内容为基础而编写的。共分九章,每章设计了五个板块: 一、重点内容提要,列出基本概念、重要内容简介,重要定理和公式,突出考点的核心知识。 二、知识结构图,用框图形式列出各知识点间的有机联系。 三、常考题型及典型精解,从多年教学经验出发,列出了常见考研题型和课程结业考试试题,并编入一些典型题,给出了详细解答。其中不少题目是对相应内容的进一步补充。 四、学习效果测试题,这一部分是为检查读者的学习效果和应试能力而设计的。通过测试,读者可以进一步加深对所学内容的理解,增强解题应试能力。 五、课后习题全解 对《数值分析》(清华·第四版)的课后习题作了详细解答。 本书从指导课程教学、学习和考
本书是为正在学习数学分析(微积分)的读者,正在复习数学分析(微积分)准备报考研究生的读者以及从事这方面教学工作的年轻教师编写的。 遵循现行教材的顺序,本书全面、系统地总结和归纳了数学分析问题的基本类型,每种类型的基本方法,对每种方法先概括要点,再选取典型而有相当难度的例题,逐层剖析,分类讲解。然后分别配备相应的一套练习。旨在拓宽基础,启发思路,培养学生分析问题和解决问题的能力,作为教材的补充和延深。此外,对现行教材中比较薄弱的部分,如半连续、凸函数、不等式、等度连续等内容,作了适当扩充。 全书共分7章、33节、220个条目、1200个问题,包括一元函数极限、连续、微分、积分、级数;多元函数极限、连续、微分、积分。 本书大量采用全国部分高校历届硕士研究生数学分析入学试题、苏
由费定晖、周学圣编演,郭大钧、邵品琮主审的图书《B.Ⅱ.吉米多维奇数学分析习题集题解》(以下简称为《题解》),全书共六册,自1979年经由山东科学技术出版社出版发行以来,历经34个春秋,先后共有4个版本30余次印刷,一直不衰,深得读者厚爱。对此我们倍感欣慰,这将鞭策我们为读者作出更多奉献。 这次受山东科学技术出版社的再次约请,由我负责,在《题解》一书的基础上,从各章节中挑选出较为经典的习题,除了原解答外,有些题还给出了分析提示或思路,从而组成一本新书《B.Ⅱ.吉米多维奇数学分析习题经典解析》(以下简称为《经典解析》),全书共一册出版。 对于《经典解析》一书,我有以下几点考虑: ,考虑到不同层次的读者的不同要求,各类型的习题由浅入深,由易到难。有些题在它的后面还加上注,例如,143题证明施托尔茨定理
本书介绍了多元数据分析的现代方法,主要讲解多元统计学中的方法及其应用。作者通过大量的示例说明每种技术的工作方式以及应用方法,还应用几何图形的方法来开发学生的直觉力,帮助读者对各种方法有一个比较形象的认识。书中大量习题和示例采用了来源于心理学、社会学和营销学等各个学科的真实数据。因为本书提供了各种类型的应用,所以适用于很多专业的教学,不仅适合营销学、组织行为学、会计学专业,还适合工程学、教育学、经济学、心理学、社会学和统计学等专业。
由费定晖、周学圣编演,郭大钧、邵品琮主审的图书《B.Ⅱ.吉米多维奇数学分析习题集题解》(以下简称为《题解》),全书共六册,自1979年经由山东科学技术出版社出版发行以来,历经34个春秋,先后共有4个版本30余次印刷,一直不衰,深得读者厚爱。对此我们倍感欣慰,这将鞭策我们为读者作出更多奉献。 这次受山东科学技术出版社的再次约请,由我负责,在《题解》一书的基础上,从各章节中挑选出较为经典的习题,除了原解答外,有些题还给出了分析提示或思路,从而组成一本新书《B.Ⅱ.吉米多维奇数学分析习题经典解析》(以下简称为《经典解析》),全书共一册出版。 对于《经典解析》一书,我有以下几点考虑: ,考虑到不同层次的读者的不同要求,各类型的习题由浅入深,由易到难。有些题在它的后面还加上注,例如,143题证明施托尔茨定理
《MATLAB数值分析(第2版)》以MATLABR2011a为平台编写,介绍了数值分析与应用。全书共11章,~3章讲解了MATLAB基础知识,第4~10章分别讲解了矩阵分析、求解线性方程(组)、求解非线性方程(组)、插值拟合与变换、MATLAB的微积分、求解微分方程和MATLAB的化技术。1章总结性地介绍了数值分析在各个领域中的应用,让读者进一步领略到MATLAB的强大功能。 本书可作为理工科各专业的本科生、研究生以及其他专业科技人员学习MATLAB数值分析、建模、仿真方面的教材或参考书。
本书是为正在学习数学分析(微积分)的读者,正在复习数学分析(微积分)准备报考研究生的读者以及从事这方面教学工作的年轻教师编写的。 遵循现行教材的顺序,本书全面、系统地总结和归纳了数学分析问题的基本类型,每种类型的基本方法,对每种方法先概括要点,再选取典型而有相当难度的例题,逐层剖析,分类讲解。然后分别配备相应的一套练习。旨在拓宽基础,启发思路,培养学生分析问题和解决问题的能力,作为教材的补充和延深。此外,对现行教材中比较薄弱的部分,如半连续、凸函数、不等式、等度连续等内容,作了适当扩充。 全书共分7章、33节、220个条目、1200个问题,包括一元函数极限、连续、微分、积分、级数;多元函数极限、连续、微分、积分。 本书大量采用全国部分高校历届硕士研究生数学分析入学试题、苏
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
本书通过八讲内容:连续统、极限、函数、级数、导数、积分、函数的级数展开和微分方程,概述了数学分析中易于了解和记忆的基本思想、基本概念和基本方法,使读者可在短时间内对数学分析的全貌有初步的了解, 并学会掌握数学分析的精髓。 本书虽是给那些想提高自己数学分析水平的工程师写的, 但对于经济学家、数学教师、数学系的学生等, 都具有非凡意义。
《MATLAB数值分析(第2版)》以MATLABR2011a为平台编写,介绍了数值分析与应用。全书共11章,~3章讲解了MATLAB基础知识,第4~10章分别讲解了矩阵分析、求解线性方程(组)、求解非线性方程(组)、插值拟合与变换、MATLAB的微积分、求解微分方程和MATLAB的化技术。1章总结性地介绍了数值分析在各个领域中的应用,让读者进一步领略到MATLAB的强大功能。 本书可作为理工科各专业的本科生、研究生以及其他专业科技人员学习MATLAB数值分析、建模、仿真方面的教材或参考书。
本书介绍了多元数据分析的现代方法,主要讲解多元统计学中的方法及其应用。作者通过大量的示例说明每种技术的工作方式以及应用方法,还应用几何图形的方法来开发学生的直觉力,帮助读者对各种方法有一个比较形象的认识。书中大量习题和示例采用了来源于心理学、社会学和营销学等各个学科的真实数据。因为本书提供了各种类型的应用,所以适用于很多专业的教学,不仅适合营销学、组织行为学、会计学专业,还适合工程学、教育学、经济学、心理学、社会学和统计学等专业。
本书是为工学硕士研究生数值分析课而编写的学位课教材。内容包括:线性方程组的解法,矩阵特征值与特征向量的计算,非线性方程与非线性方程组的迭代解法,插值与逼近,数值积分,常微分方程初值问题的数值解法和偏微分方程的差分解法。内容丰富,系统性强,语言简练、流畅,数值例子和习题非常丰富,并附习题答案。其深度和广度适合工学硕士生的培养要求。 本书还可供从事科学与工程计算的科技人员自学和参考。