《希尔伯特空间及其应用导论(第3版)(英文版)》无论是学生还是科研人员,都将从《希尔伯特空间及其应用导论(第3版)(英文版)》的特别表达中受益。《希尔伯特空间及其应用导论(第3版)(英文版)》在原来版本的基础上做了不少改动,新增加了一部分讲述Sobolev空间,展开讲述了有限维赋范空间,有关小波的一章做了全面更新。并且包括了积分和微分方程、量子力学、化、变分和控制问题、逼近理论问题、非线性不稳定性和分岔理论的多种应用。在众多希尔伯特空间的书中,《希尔伯特空间及其应用导论(第3版)(英文版)》在讲述勒贝格积分方面独具特色。学习泛函分析和希尔伯特理论的老师和学生都十分推崇这本书作为教材或者参考书。
This is primarily a textbook on mathematical analysis forgraduate students in economics. While there are a large number ofexcellent textbooks on thiroad topic in the mathematicsliterature, most ofthese texts are overly advanced relative to theneeds of the vast majority of economics students and concentrate onvarious topics that are not readily helpful for studying economictheory. Moreover, it seems that most economics students lack thetime or courage to enroll in a math course at the graduatelevel. Sometimes this is not even for bad reasons, for only fewmath departments offer classes that are designed for the parhcularneeds of economists. Unfortunately,more often than not, theconsequent lack ofmathematical background cre-ates problems for thestudents at a later stage of their education, since an exceedinglylarge fraction ofeconomic theory is imperable without somerigorouackground in real analysis. The present text aims atproviding a remedy for this inconvenient situation.
本书从一道中国台北数学奧林匹克试题谈起,详细介绍了切比雪夫逼近问题的相关知识及应用.全书共20章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
Nonsmoothanalysisreferstodifferentialanalysisintheabsenceofdifferentiability.Itcanberegardedasasubfieldofthatvastsubjectknownasnonlinearanalysis.Whilenonsmoothanalysishasclassicalroots(weclaimtohavetraceditslineagehacktoDini),itisonlyinthelastdecadesthatthesubjecthasgrownrapidly.Tothepoint,infact,thatfurtherdevelopmenthassometimesappearedindangerofbeingstymied,duetotheplethoraofdefinitionsandunclearlyrelatedtheories.
数学主要讲述思想的方法,深入理解数学比掌握一大堆的定理、定义、问题和技术显得更为重要。理论和定义共同作用,本书在介绍实分析的时候结合详尽、广泛的阐释,使得读者完全理解分析基础和方法。目次:基础;实数体系结构;实线拓扑;连续函数;微分学;积分学;序列和函数级数;超函数;欧拉空间和矩阵空间;欧拉空间上的微分计算;常微分方程;傅里叶级数;隐函数、曲线和曲面;勒贝格积分;多重积分。读者对象:数学专业的研究生以及相关的科研人员。
本书是世界知名统计学家的力作,主要内容有多元正态分布、方差分析、回归分析、因子分析、椭球等高分布、相依性模式、图模型。附录中还列出了矩阵理论、Wilk似然准则和其他常用检验的显著性水平的分位数。本书在世界各高等学校中广为采用,是一本经典的多元统计分析课程的教材,也可供相关统计研究人员、应用多元统计的科技工作者参考。
聚类是指根据给定的多个对象及其属性,基于相似性函数度量对象间的相似性,以寻找有意义或有用的对象分组。聚类分析方法是人们认识和理解世界的最基本方式之一,广泛应用于计算生物学、市场分析、社交网络数据分析、电子商务数据分析等众多领域。由于聚类分析的多样性、重要性和广泛性,尤其是在目前大数据时代背景下,众多应用领域对聚类分析算法提出了新的挑战。本书从问题的计算复杂性证明和近似算法设计的角度,对若干个聚类问题进行了讨论和研究,主要研究了带缺失值的两元指纹向量聚类问题、两元矩阵的k-子矩阵划分问题、割聚类问题、设施定位问题与k-median 问题等。本书可作为从事计算复杂性理论、聚类分析研究和应用科技人员的参考书。
《统一无穷理论》根据理想计数器模型,综合运用三维视野(自然数数值维、编码长度维和∞的可达性维),指出传统自然数集概念和层次无穷理论的局限性,提出完整的自然数集概念和统一无穷理论:①肯定自然数的二重性(内蕴性和排序性)和无穷的双相性(潜无穷和实无穷并存)。②指出潜无穷过程只能生成由有穷自然数组成的开放序列,它不是无穷集合;实无穷过程可生成由所有自然数组成的无穷集合,包括有穷自然数、趋近无穷自然数和无穷大。③断定完整的自然数集和单位区间实数集等势,2 ∞ =∞是∞的基本性质,∞和无穷小δ=1/∞存在。④提出数的理想模型和规范模概念,证明数和无理数都是无穷集,得到了数的判定定理。 《统一无穷理论》是用计算机科学原理和方法论证数学基础问题的初次尝试,重点在于阐述统一无穷理念,适于研究无穷问
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。