本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
数学文化小丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些数学家的历史功绩和品质等内容,适于包括中学生在内的读者阅读。
本教材坚持以高中新课程衔接为主线,以函数为研究对象,以极限为基本工具,主要讨论函数的微分和积分问题以及无穷级数、常微分方程及差分方程,并使学生掌握应用理论知识解决实际问题的能力。本教材附有配套练习册。
本书着重阐明微积分中的各主要问题、基本思想,包括实数理论,极限论、连续性概念、微积分主题浅释、微商与微分、黎曼积分及其推广、函数级数、非标准分析大意、数学研究中的创造性思维规律、数学科学与现代文明等。
微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
本书用简练的文字,介绍了70位微积分的创立者及其先驱的简要经历、学术成就、治学态度、治学方法,概括性地论述了微积分的萌芽、创建、发展过程,其中还包含了一些科学家的名言和趣闻轶事。本书可以作为学习数学史的选讲,也是“高等数学”课程的一本教学参考书,既可供各类高等学校师生参考,又可供广大数学爱好者阅读。