本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
戴建生编著的这本《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四元数、Clifford对偶四元数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。 在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论
《有限元方法卷:基本原理(第5版)》为有限元方法系列专著的卷——基本原理,涵盖了有限元分析的一些基础领域,同时还涉足有限元分析的前沿内容。本卷共20章,内容广泛,既强调有限元的数学力学原理,又结合工程实际背景。该书的版完成于1967年,到现在已出版第5版,历时40余年,成为有限元领域的经典著作,已有几代从事计算力学的学者从该书中受益。本书可作为高年级本科生和研究生的课程学习参考书,也是从事有限元研究的科研人员和工程技术人员的重要学习文献。
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
《几何背景下的数学物理方法》内容除包括传统的复变函数、数学物理方程、特殊函数和积分变换外,还概述了微积分中的数学思想,简单介绍了广义函数的入门知识。《几何背景下的数学物理方法》观点新颖,极具启发性,内容由浅入深,同时又能深入浅出。全书注重对数学概念的阐述、对知识的来龙去脉的交代,把数学思想方法和具体的数学知识融为一体,以此来不断提升读者对数学知识的认识和理解水平;尤为注重几何直观的引导作用,尽量以平面和函数空问为背景阐述全书内容,对数学物理方程的常用解法,诸如分离变量法和积分变换法等的原理都做出了几何解释。并且,从推广函数空间的坐标表示的角度引出广义函数的概念,实现了从函数概念到广义函数概念的自然过渡。全书为读者进一步学习泛函分析铺平了道路。 《几何背景下的数学物理方法》
《三角形的六心及其应用》共分6章,包括三角形六心的概念和性质,三角形六心的坐标表示、向量形式及应用,三角形六心问的距离,圆内接四边形中三角形的六心性质及应用,三角形六心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。《三角形的六心及其应用》适合于初、学生,初、数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”及省级骨干教师培训班参考使用。
本书可作为正在学习《高等数学》的本科学生以及准备报考研究生的人员的参考书。也可以作为准备参加大学生教学竞赛的辅助材料。在本书中,将常见问题归纳成约750个例题。其中既包括基本计算题,也包括具有难度的证明题。特别包括那些有助于深入理解高等数学的基本理论与基本方法的问题,而是基本掌握了《高等数学》这门课程。
《数学学习方法指导丛书:数学分析》较为系统地综述了数学分析的基本内容、方法、技巧。通过典型例子指出在学习、作业、考古中常见的错误及纠正的办法。全书重点放在钥匙方法、技巧上,提供一篆列新颖有效果的钥匙思路,全书配有大量的习题、历届考研试题,书末附有答案,也介绍一些较为深入的内容。
《数学简史(第四版)》精心叙述历史的小书初版是在1948年,到现在已经是第四版了。 《数学简史(第四版)》从史上现存份文件开始直至20世纪中叶,讲述了数学各个领域里的发展主流,无数的学生、研究人员、历史学者、专家——总之一句话,每一个对数学有兴趣的人——都会觉得《数学简史(第四版)》引人入胜、回味无穷。 《数学简史(第四版)》作者D.J.斯特罗伊克从古代近东开始,沿着在埃及、巴比伦、中国和阿拉伯发展出的思想和技术,探究诸如埃及的《莱茵德纸草书》、中国的《算经十书》、印度的《悉昙多》等手稿,再从爱奥尼亚理性主义直到君士坦丁堡失陷来看待希腊和罗马的发展,谈到中世纪欧洲的思想和文艺复兴潮流,分析17世纪和18世纪的贡献,对19世纪的观念做出了富有启发性的阐述。他没有遗漏任何数学史上的重要人物——欧几里
本书是威廉·费勒的著作《概率论及其应用》卷的续篇。 曾经影响了包括中国在内的世界各国几代概率论及其相关领域的学生和研究者。 即使用的标准来衡量,该书仍是一本经典佳作。 本书包括各种重要的分布和过程、大数定律、中心极限定理、无穷可分分布、半群方法与无穷可分分布和马尔可夫过程的关系、更新理论、游动及傅里叶方法的应用、拉普拉斯变换及其应用、特征函数以及调和分析等19章内容。 本书既可作为概率论及相关学科的教学参考书,亦可作为相关科学研究的引导书。
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
本书是概率论大师伊藤清的名著。篇幅短小,内容丰富,既包括事件、概率、概率空间、均值、特征函数等基本概念,又包括大数定律、Poisson小数定律、遍历定理以及过程的基本内容。 这是一本经典的概率论入门书,适合相关领域的本科生、研究生和教师作为参考书,是每一位概率学者的案头佳作。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
《分析与代数原理(及数论 卷 第2版)》源自巴黎综合理工大学的一年级课程,全书主要内容包括: “数学小词典”以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多道习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个“问题校正”综合了书中的定理用以证明出一些漂亮结果。 《分析与代数原理(及数论 卷 第2版)》的主要特色在于强调数学的文化特性和数学的统一性许多脚注都暂时离开数学的“主干道”而进行一次别样的“短途观光”7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题其中之一是关于素数定理,它的证明经历了150多年才完
Inequality haee aessential tool imany areas of mathematical research, for example iprobability and statistics where it is frequently used ithe proofs. Probability Inequalities covers inequalities related with events, distributiofunctions, characteristic functions, moments and random variables (elements) and their sum. The book shall serve as a useful tool and reference for scientists ithe areas of probability and statistics, and applied mathematics.
《现代数学译丛:微分方程的对称与积分方法》系统地介绍了量纲分析、Lie无穷小变换以及在常微分方程(组)和偏微分方程(组)中的应用,全书共分四章,章介绍了量纲分析、有关的重要原理及其在偏微分方程不变解中的应用,第2章发展了Lie无穷小变换和Lie代数,给出了一些基本定理和性质,另外,详细给出了无穷小变换的高阶展开公式,第3章主要讨论Lie对称在各种常微分方程(组)中的应用,包括一阶、二阶和更高阶的方程以及常微分方程的初值问题等,另外,还讨论了接触对称、高阶对称和伴随对称,第4章讨论Lie对称在各类偏微分方程(组)中的应用,每节后附有大量经典的例子,供读者进一步熟练掌握Lie对称及其拓展类型的使用方法,详略得当,易于读者阅读。 《现代数学译丛:微分方程的对称与积分方法》可作为高等院校数学、物理、力学、生物
《模李超代数》主要讨论Cartan型模李超代数,其中包括作者近年来在模李超代数方向上的研究成果。书中构造了四类Cartan型模李超代数,讨论了李超代数的结合型与深度1的z-阶化李超代数,介绍了形式向量场上的两类无限维的Cartan型李超代数。