《动力系统反控制方法及其应用》详细论述了离散时间系统、连续时间系统和切换系统反控制(即混沌化)的研究方法与应用及其电路设计与实现,共20章。~9章主要介绍离散时间系统反控制,包括数学预备知识与混沌的基本概念,离散时间系统反控制的Chen-Lai算法及其电路实现,离散时间系统反控制的Wang-Chen算法,单峰和多峰映射,离散正弦多峰映射,线性取模运算多峰映射,混沌控制与同步,离散时间系统的单变量反控制、同步及其在混沌序列密码中的应用,高维广义超混沌猫映射及其在分组图像加密中的应用等。0~19章主要介绍连续时间系统与切换系统的反控制,包括连续时间系统与切换系统反控制方法概述,连续时间线性系统的反控制,连续时间非线性系统的反控制,三维切换系统的反控制,四维切换系统的反控制,具有指标1鞍焦平衡点和相同特征平面的
《数学交叉学科与应用数学丛书·生物数学:种群生物学与传染病学中的数学模型(第2版)》结合大量例子和实际问题,由浅入深地介绍了生物数学中的两个主要领域——种群生物学与传染病学中的数学模型,全书分为单种群模型、物种间相互作用模型、结构种群模型和疾病传播模型4个部分,共10章。 《数学交叉学科与应用数学丛书·生物数学:种群生物学与传染病学中的数学模型(第2版)》可作为生物学、医学、数学等有关专业的大学本科生和研究生的教材,也可供种群生态学、传染病学或进化论生物学等领域的科研人员参考使用.书中提供的大量实际案例和参考文献,是有关人员难得的资源。
本书内容按照数学知识的由浅入深分成了四个部分。基本分析部分介绍了非线性系统的基本概念和基本分析方法;反馈系统分析部分介绍了输入-输出稳定性、无源性和反馈系统的频域分析;现代分析部分介绍了现代稳定性分析的基本概念、扰动系统的稳定性、扰动理论和平均化以及奇异扰动理论;非线性反馈控制部分介绍了反馈控制的基本概念的反馈线性化,并给出了几种非线性设计工具,如滑模控制、李雅普诺夫再设计、反步法、基于无源的控制和高增益观测器等。全书已根据作者2011年2月所发勘误表进行了内容更正。 读者对象:本书既可以作为研究生学期非线性系统课程的教材,也可以作为工程技术人员、应用数学专业人员的自学教材或参考书。
本书针对微观经济计量分析做出了详细研究,内容涉及对揭示个体或厂商经济行为的个体层面数据加以分析。本书旨在为应用研究者提供一种综合的统计方法,以及将其用于现代微观经济计量领域的研究方法。本书适合从事相关研究工作的人员参考阅读。
本书全面讨论了精算损失模型和精算建模方法,共分5个部分。第2部分至第5部分是全书的核心,汇总了精算模型和精算建模方法2个体系的内容。第2部分除介绍一般损失模型常用的概率分布外,还介绍了保险精算中最基本的索赔频率模型、索赔额模型以及总损失模型,并在此基础上讨论了破产理论模型。随后3个部分的核心主题是精算建模方法,从经验建模方法到参数化(统计)建模,直至第5部分的模型修正方法和模拟方法。本书是北美精算考试当前考试体系课程MLC和C的指定参考书,是从事金融和精算工作的专业人士很有价值的参考书,也可作为高等学校金融和精算方向相关课程的参考。
stochaLstic Calculus of Variations(or Malliavin Calculus)consists,in brief,in constructing and exploiting natural differentiable structures on abstract Drobability spaces;in other words,Stochastic Calculus of Variations proceeds from a merging of differential calculus and probability theory. As optimization under a random environment iS at the heart of mathemat’ical finance,and as differential calculus iS of paramount importance for the search of extrema,it is not surprising that Stochastic Calculus of Variations appears in mathematical finance.The putation of price sensitivities(orGreeksl obviously belongs to the realm of differential calculus. Nevertheless,Stochastic Calculus of Variations Was introduced relatively late in the mathematical finance literature:first in 1991 with the Ocone-Karatzas hedging formula,and soon after that,many other applications alDeared in various other branches of mathematical finance;in 1999 a new irapetus came from the works of P.L.Li
stochaLstic Calculus of Variations(or Malliavin Calculus)consists,in brief,in constructing and exploiting natural differentiable structures on abstract Drobability spaces;in other words,Stochastic Calculus of Variations proceeds from a merging of differential calculus and probability theory. As optimization under a random environment iS at the heart of mathemat’ical finance,and as differential calculus iS of paramount importance for the search of extrema,it is not surprising that Stochastic Calculus of Variations appears in mathematical finance.The putation of price sensitivities(orGreeksl obviously belongs to the realm of differential calculus. Nevertheless,Stochastic Calculus of Variations Was introduced relatively late in the mathematical finance literature:first in 1991 with the Ocone-Karatzas hedging formula,and soon after that,many other applications alDeared in various other branches of mathematical finance;in 1999 a new irapetus came from the works of P.L.Li
stochaLstic Calculus of Variations(or Malliavin Calculus)consists,in brief,in constructing and exploiting natural differentiable structures on abstract Drobability spaces;in other words,Stochastic Calculus of Variations proceeds from a merging of differential calculus and probability theory. As optimization under a random environment iS at the heart of mathemat’ical finance,and as differential calculus iS of paramount importance for the search of extrema,it is not surprising that Stochastic Calculus of Variations appears in mathematical finance.The computation of price sensitivities(orGreeksl obviously belongs to the realm of differential calculus. Nevertheless,Stochastic Calculus of Variations Was introduced relatively late in the mathematical finance literature:first in 1991 with the Ocone-Karatzas hedging formula,and soon after that,many other applications alDeared in various other branches of mathematical finance;in 1999 a new irapetus came from the works of P.L
《离散数学内容提要与习题解析》是与《离散数学》(第3版)(西安交通大学出版社,2012)配套的教学指导用书。每章包括内容提要、学习要求、习题与解答提示、习题详解四部分。“内容提要”总结了每章的主要定义、定理、公式、算法和重要的结论;“学习要求 ”给出了学习者在每章节应掌握的概念、结论、方法;“习题与解答提示”给出了习题中涉及的概念、定理、算法、证明方法和思路,对其中的典型习题,给出了多种解题思路或构造方法;“习题详解”给出了习题的详细解答。解答的习题共265道,涵盖了数理逻辑、集合论、代数系统、图论等离散数学模块的基本内容和典型的解题方法。 《离散数学内容提要与习题解析》既可以作为主教材的配套教学用书,也可以单独使用,为学习离散数学的读者在解题能力和技巧训练方面提供有益的帮助。
本书的出现说明,20世纪90年代是一个转折点,研究者不再将人模型化为超级理性的博弈方。解决均衡选择问题的新方法强调了如下近乎同义反复的论断:所选择的均衡是达到均衡的均衡过程的函数。 该书主要讲授近代以来中国人民抵御外来侵略、争取民族独立、推翻反动统治、实现人民解放、追求社会进步、实现国家繁荣富强和人民共同富裕的历史。全书共九章,围绕实现中华民族复兴的主题,以中华民族从衰落走向复兴的历史征程与光明前景为基本脉络,着重探讨了中国在近代世界的落伍与半殖民地半封建社会的形成、历史大变局中传统社会力量的应对、资产阶级的改良与革命、中国共产党的创立与国民革命、南京国民政府的初期统治与中国苏维埃运动的兴起、全民族的抗日战争、中国命运的抉择与中华人民共和国的诞生、社会主义制度建立与社会主义建
本书主要阐述日本学者和田秀树研创的“和田氏数学学习法”,该方法在日本推出后好评如潮。理财需要数学,投资需要数学。作者不只是告诉您数学无处不在,也让您知道,培养数学式的思维是不会年龄的…… E时代最抢手人:能够将资料整理得当,做有系统解读的“带路人”,能将知识当作“思考素材”,做妥善运用的“数学头脑”人; 成为抢手人的三要件: 1、拥有数学头脑,能解读数字 2、能做逻辑式思考,判断正确 3、勇于尝试,从错误中学习 成功成为抢手人的绝招: 用“和田式数学学习法”强效提升数学力,随时养成数字思考的习惯。
《金融中的数值方法和优化(英文)》旨在为读者介绍金融计算工具—基本数值分析和计算技巧,如期权定价、并突出了模拟和优化的重要性,用许多章讲述投资组合保险和风险估计问题。特别地,有几章用于讲述优化探索和如何将他们应用于投资组合的选择、估值的校准和期权定价模型。这些具体的例子让读者学习了解决问题的具体步骤,以及将这些步骤举一反三。同时,这些应用使得《金融中的数值方法和优化(英文)》的参考价值大大提高。