本书着重介绍了与现代计算有关的数值分析的基本方法,强调基本概念、理论和应用,特别是数值方法在计算机上的实现。以期学生在使用本教材后能够在计算机上进行有关的科学与工程计算。本书理论叙述严谨、精炼,概念交待明确,描述清晰,系统性较强,可供各校《数值分析》课程采用。全书包括:插值和逼近,数值积分和微分,解线性代数方程的直接和迭代方法,解非线性方程和方程组的数值方法,特征值问题和常微分方程初值问题的计算方法。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
AnearlyexperimentthatconceivesthebasicideaofMonteCarlopu-tatiosisknownas"Buffon'needle",firststatedbyGeorgesLouisLeclercComtedeBuffonin1777.Inthiswell-knownexperiment,onthrowsaneedleoflengthlontoaflatsurfacewithagridofparallellineswithspacing.Itiseasytoputethat,underidealconditions,thechancethattheneedlewillintersectoneofthelinesin.Thus,ifweleppNbetheProportionof"intersects"inNthrows,wecanhaveanestimateofπaswjocjwill"converge"toπasNincreasestoinfinity.
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
《数值方法》系统讲解数值方法,作者在第1版的基础上进行了较多修改。主要内容包括误差的概念、非线性方程求根方法、线性方程组求解、矩阵的特征值与特征向量的计算、插值、曲线拟合与函数逼近、数值积分方法、常微分方程求解、偏微分方程求解等。书中包含丰富的实例和练习,并且介绍了如何应用MATLAB软件完成相关的求解工作。
thesenotesdevelopedfromacourseonthenumericalsolutionofconservationlawsfirsttaughtattheuniversityofwashingtoninthefallof1988andthenatethduringthefollowingspring.theoverallemphasisisonstudyingthemathematicaltoolsthatareessentialindeveloping,analyzing,andsuccessfullyusingnumericalmethodsfornonlinearsystemsofconservationlaws,particularlyforproblemsinvolvingshockwaves.areasonableunderstandingofthemathematicalstructureoftheseequationsandtheirsolutionsisfirstrequired,andpartiofthesenotesdealswiththistheory.partiidealsmoredirectlywithnumericalmethods,againwiththeemphasisongeneraltoolsthatareofbroaduse.ihavestressedtheunderlyingideasusedinvariousclassesofmethodsratherthanpresentingthemostsophisticatedmethodsingreatdetail.myaimwastoprovideasufficientbackgroundthatstudentscouldthenapproachthecurrentresearchliteraturewiththenecessarytoolsandunderstanding.
《数值方法》系统讲解数值方法,作者在第1版的基础上进行了较多修改。主要内容包括误差的概念、非线性方程求根方法、线性方程组求解、矩阵的特征值与特征向量的计算、插值、曲线拟合与函数逼近、数值积分方法、常微分方程求解、偏微分方程求解等。书中包含丰富的实例和练习,并且介绍了如何应用MATLAB软件完成相关的求解工作。
《解析不等式的若干问题》分为6章,内容包括基础不等式和相关不等式、两个新的不等式的创建及其应用、凸函数的若干不等式及其应用、单调函数和单调数列有关不等式等。
本书以版MATLAB为平台,介绍了数值分析方法与图形可视化。全书共分9章,、2章讲解了MATLAB基础知识,第3~9章分别讲解了误差、插值法与曲线拟合、线性方程组的数值解法、非线性方程求解、数值微分与数值积分、矩阵特征值计算和常微分方程的数值解。MATLAB以其独特的魅力,改变了传统数值分析的编程观念,从而成为实现上述目标的有利工具。本书可作为理工科各专业本科生、研究生以及应用MATLAB的相关科技人员学习MATLAB数值分析、建模、仿真的教材或参考书。
矩阵计算不仅是一门数学分支学科,也是众多理工科的重要的数学工具,计算机科学和工程的问题最终都变成关于矩阵的运算。本书主要针对计算机科学、电子工程和计算数学等学科中的研究需求,以各种类型的线性方程组求解为主线进行阐述。内容侧重于分析各种矩阵分解及其应用,而不是矩阵的理论分析。介绍了各类算法在计算机上的实现方法,并讨论了各种算法的敏感性分析。在广度上和深度上较同类教材都有所加强。本书适合相关领域广大研究生与高年级本科生阅读,也可作为这些领域中学者的参考书。
本书是作者在多年来为四川省部分高校相关理工科专业的硕士研究生、工程硕士生、本科生开设化方法课程的教学实践和自编教材的基础上,对搜集整理的大量材料做了充分酝酿,反复修改而成的。教材在课程内容的处理上遵循如下原则:突出方法,注重概念,适当介绍算法的基本理论;强调应用,加强算法实现的基本训练;引导学生主动思考,激发学生的学习兴趣;通过算法到程序设计有序而系统的训练,提高学生程序设计的能力。全书分为上、下两篇。上篇共9章,介绍无约束化方法,包括基础知识(介绍凸集的基本性质,函数及凸函数的性条件),化问题及无约束化算法综述,以及求解无约束化问题的各种算法。下篇共8章,介绍约束化方法,包括线性规划问题及其解法,非线性规划的化条件及常用的算法,以及离散系统的动态规划方法等。本书可作为高等院
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。本书可作为大学本科计算数学专业教材,也可作为其他理工学科硕士、博士研究生的教材或参考书。