《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
Many different mathematical methods and concepts are used in classical mechanics: differential equations and phase flows, smooth mappings and manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic theory. Many modern mathematical theories arose from problems in mechanics and only later acquired that axiomatic-abstract form which makes them so hard to study.
《近似算法》系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中最重要的问题以及所使用的基本方法和思想。全书分为三部分:第一部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、最短超字符串、背包、装箱问题、最小时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个最短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。 《近似算法》可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及
《有限元方法基础论第6版》是一套在国际上颇具权威性的经典著作(共三卷),由有限元法的创始人Zienkiewicz教授和美国加州大学Taylor教授合作撰写,初版于1967年,多次修订再版,深受力学界和工程界科技人员的欢迎。《有限元方法基础论第6版》的特点是理论可靠,内容全面,既有基础理论,又有其具体应用。第1卷目次:标准的离散系统和有限元方法的起源;弹性力学问题的直接方法;有限元概念的推广,Galerkin加权残数和变分法;‘标准的’和‘晋级的’单元形函数:Co连续性单元族;映射单元和数值积分—无限元和奇异元;线性弹性问题;场问题—热传导、电磁势、流体流动;自动网格生成;拼法试验,简缩积分和非协调元;混合公式和约束—完全场方法;不可压缩材料,混合方法和其它解法;多区域混合逼近-区域分解和“框架”方法;误差、恢复过程和误
本书是作者在多年来为四川省部分高校相关理工科专业的硕士研究生、工程硕士生、本科生开设化方法课程的教学实践和自编教材的基础上,对搜集整理的大量材料做了充分酝酿,反复修改而成的。 教材在课程内容的处理上遵循如下原则:突出方法,注重概念,适当介绍算法的基本理论;强调应用,加强算法实现的基本训练;引导学生主动思考,激发学生的学习兴趣;通过算法到程序设计有序而系统的训练,提高学生程序设计的能力。 全书分为上、下两篇。上篇共9章,介绍无约束化方法,包括基础知识(介绍凸集的基本性质,函数及凸函数的性条件),化问题及无约束化算法综述,以及求解无约束化问题的各种算法。下篇共8章,介绍约束化方法,包括线性规划问题及其解法,非线性规划的化条件及常用的算法,以及离散系统的动态规划方法等。 本书可
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition haeen to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation.
本书系统阐述了有限单元法的基本原理及其工程应用,包括弹性力学平面问题和空间问题、薄板、薄壳、厚板、厚壳、弹性稳定、塑性力学、大位移、断裂、动力反应、徐变、岩土力学、混凝土与钢筋混凝土、流体力学、热传导、工程反分析、仿真计算、网络自动生成、误差估计及自适应技术。本次第三版新增了渗流场分析的夹层代孔列法、岩土工程的极限分析等,重编了大体积混凝土的人工冷却和混凝土坝仿真分析的复合单元。 本书内容丰富,取材新颖,概念清晰,提出了一些新的计算方法,并特别重视理论联系实际,兼有科学性和实用性。 本书可供土木、水利、机械等工程专业的设计、科研人员使用,也可供高等院校有关专业的师生参考。
本书是应用数学与计算数学中有关曲面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析,书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、 Boole和与Coons曲面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、径向基函数方法、运动最小二乘法、隐函数样条方法、 R函数法等,同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。 本书可供应用数学与计算数学专业的研究生阅读,也可作为水文地质、预测预报、模式识别、统计学习等工程技术领域科技人员的参考用书。
该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。 该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考