本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
配合课堂教学,提供给学生折纸活动的一本学习材料用书,促进学生在折纸活动中提升动手能力,发展思维能力。该书适合幼儿园到初中的学生,不同阶段的学生都能在折纸中找到乐趣。
本书旨在介绍寿险精算数学的基本理论。通过阅读本书,读者可以了解建立寿险经验生命表的基本方法和步骤,学会计算连续型和离散型寿险保单的趸缴纯保费及生存年金的精算现值;并在此基础上计算均衡纯保费。本书导出了各种情况下准备金的计算方法、总保费的计算、总保费准备金的计算和准备金的几种修正方法。 本书是对2001年版寿险精算数学的修订。该书旨在介绍寿险精算数学的基本理论。本书导出了各种情况下准备金的计算方法、总保费的计算、总保费准备金的计算和准备金的几种修正方法。讨论了在独立性假设下个体的联合生存状态和最后生存状态的相关精算变量及关系,还进一步探讨了在非独立情形下的分布规律,并引入了两个寿险生命参数模型,Frank's Copula模型和Common Shock模型。介绍了多元风险模型与伴随单风险模型,推导了多元风险模
本书以版MATLAB为平台,介绍了数值分析方法与图形可视化。全书共分9章,、2章讲解了MATLAB基础知识,第3~9章分别讲解了误差、插值法与曲线拟合、线性方程组的数值解法、非线性方程求解、数值微分与数值积分、矩阵特征值计算和常微分方程的数值解。MATLAB以其独特的魅力,改变了传统数值分析的编程观念,从而成为实现上述目标的有利工具。 本书可作为理工科各专业本科生、研究生以及应用MATLAB的相关科技人员学习MATLAB数值分析、建模、仿真的教材或参考书。
An early experiment that conceives the basic idea of Monte Carlo pu-tatios is known as "Buffon'needle",first stated by Georges Louis Leclerc Comte de Buffon in 1777.In this well-known experiment,on throws a needle of length l onto a flat surface with a grid of parallel lines with spacing.It is easy to pute that,under ideal conditions,the chance that the needle will intersect one of the lines in .Thus,if we lep pN be the Proportion of "intersects"in N throws,we can have an estimate of π as wjocj will"converge"to π as N increases to infinity.
本书是计算方法的入门,旨在通过一些基本的数值方法来探究数值算法设计的基本技术,诸如缩减技术、校正技术、松弛技术与二分技术等,《计算方法:算法设计及其MATLAB实现(第2版)》追求简约,数值算法的设计与分析尽量回避烦琐的数学演绎,《计算方法:算法设计及其MATLAB实现(第2版)》追求统一,所提供的算法设计技术囊括了快速算法与并行算法等高效算法的设计,《计算方法:算法设计及其MATLAB实现(第2版)》追求新奇,算法的设计机理扎根于博大精深的中华文化,讲授《计算方法:算法设计及其MATLAB实现(第2版)》的基本内容约需36-40课时。
An early experiment that conceives the basic idea of Monte Carlo pu-tatios is known as "Buffon'needle",first stated by Georges Louis Leclerc Comte de Buffon in 1777.In this well-known experiment,on throws a needle of length l onto a flat surface with a grid of parallel lines with spacing.It is easy to pute that,under ideal conditions,the chance that the needle will intersect one of the lines in .Thus,if we lep pN be the Proportion of "intersects"in N throws,we can have an estimate of π as wjocj will"converge"to π as N increases to infinity.
本书介绍线性代数和离散数学在计算机应用中所涉及的基本内容,全书共分6章,主要内容包括行列式、矩阵、线性方程组、集合论初步、图论和数理逻辑初步。书中概念论述清楚,讲解通俗易懂,着重于概念的应用。各章均配