《同调代数导论(第2版 英文版)》既有大量例题,又有许多代数应用。《同调代数导论(第2版 英文版)》内容清晰、易于遵循。作者用代数拓扑学中的与之同源的名词术语解释了同调代数的解的过程。在该全新的版本中,全文都做了更新和地修订,并且新增了层论和交换范畴的内容。
《美国微积分教材精粹选编》立足微积分教学的需要,从美国当前使用面广、影响大的教材中摘取、改编了大量有参考价值、又是教材中较为缺少的素材,并加以评注,汇集而成。全书内容分为两大类,一类是概念、原理的理解、表述和背景,共45条,摘编了美国教材中有特色的教学素材和处理方式,以及一些有用的背景材料;第二类是例题、习题精选及题解,共选编了各种不同题型、有利于培养学生能力又有新意的题目220多道,微积分projects17道。全书题目绝大部分都配有解答甚至一题多解,对其中不少题目还加了评注,以便更有目的地选用。 《美国微积分教材精粹选编》内容丰富,体例新颖,是对微积分教学素材的很好补充,可作为高等学校教授微积分课程的教师的教学参考书,也可供广大学生学习微积分时参考。
《博弈论与非线性分析续论》是《博弈论与非线性分析》的续论,主要应用非线性分析的理论和方法,对博弈论中平衡点的存在性、性和稳定性进行比较系统的研究.由于平衡点的研究与化问题、不动点问题、变分与拟变分不等式问题等都有密切联系,《博弈论与非线性分析续论》也对这些非线性问题进行比较深入的研究,此外,还研究了Bayes博弈、轻微利他平衡点和平衡点计算等较新的课题,内容包括:集值映射与不动点定理、平衡点的存在性、平衡点的稳定性与性、向量平衡问题、有限理性与非线性问题解集的稳定性、非线性问题的良定性, 《博弈论与非线性分析续论》可作为基础数学、应用数学及经济管理有关专业的高年级本科生或研究生教材,也可供从事数学及经济管理专业的科研工作者学习参考。
本书按照高中数学竞赛大纲要求,详细讲解了初等数论的基本概念、基本知识和基本的解题方法、解题技能,旨在提高学生的解决问题和分析问题的能力。
本书按照高中数学竞赛大纲要求,详细讲解了初等数论的基本概念、基本知识和基本的解题方法、解题技能,旨在提高学生的解决问题和分析问题的能力。
《近代数学史》从数学的定义、古代数学的遗产、17-18世纪各国数学发展概况、解析几何学、微积分、代数、数论、20世纪的数学、数学家小传等方面介绍了近代数学史。
《自然哲学的数学原理》是一次科学革命的集大成之作,它在物理学、数学、天文学和哲学等领域产生了巨大影响。在写作方式上,牛顿遵循古希腊的公理化模式,从定义、定律(即公理)出发,导出命题;对具体的问题(如月球的运动),把从理论导出的结果和观察结果相比较。全书共分五部分,首先“定义”,这一部分给出了物质的量、时间、空间、向心力等的定义。第二部分是“公理或运动的定律”,包括的运动三定律。接下来的内容分为三卷。前两卷的标题一样,都是“论物体的运动”。一卷研究在无阻力的自由空间中物体的运动,许多命题涉及已知力解定受力物体的运动状态(轨道、速度、运动时间等),以及由物体的运动状态确定所受的力。第二卷研究在阻力给定的情况下物体的运动、流体力学以及波动理论。
"Whenkingsarebuilding",saystheGermanpoet,"cartershaveworktodo".Kroneckerquotedthis,inhislettertoCantorofSeptember1891,onlytoadd,thinkingofhimselfnodoubt,thateachmathematicianhastobekingandcarteratthesametime.Butcartersneedroads.Notseldom,inthehistoryofourscience,hasithappenedthatakingopenedupanewroadintothepromisedlandandthathissuccessors,intentupontheirownpaths,allowedittobeoverrunbybramblesandbeeunfitfortransit...
在各界名人中,数学家是最不为人了解的,其传记恐怕也索然无味。的确,数学家的活动主要在他头脑中进行,而他的劳动成果往往只有极少数人才能理解。然而,保罗·哈尔莫斯的这本数学自传,却大有可读之处。 《我要做数学家》至少提到了一两百位数学家,有的鼎鼎大名(如冯·诺伊曼),书中不仅讲述他们的故事,还收有他们的照片,使读者对当代数学家有全面的感性认识:同时,这是一本真正的20世纪数学社会史,书中谈到陈省身等大数学家的工资状况及教授之间的工资差别,谈到怎样办好的大学,怎样营造宽松自由的学术环境作者还讲述了他对数学的理解,并以亲身经历告诉你什么是真正的数学家。
本书按照高中数学竞赛大纲要求,详细讲解了初等数论的基本概念、基本知识和基本的解题方法、解题技能,旨在提高学生的解决问题和分析问题的能力。
本书是机械工业出版社2004年出版的《计算机科学中的离散结构》的新版教材。本书涵盖了经典“离散结构”或“离散数学”课程的主要内容,包括集合论基础、逻辑代数、图论基础、关系与函数、抽象代数学基础,并适度扩充了计算机科学中常用的组合论基础知识,以及形式系统、形式推理、可计算性的基础理论。 本书内容既适合于对“离散数学”课程的教学内容有全面要求的院校,又可通过适当选材,有针对性地分别用于注重计算机科学理论或强调计算机应用技术的学科专业,具有内容系统全面、阐述浅显易懂、编排合理新颖、习题编配丰富、使用灵活方便的特点。 本书可作为高等院校计算机科学与技术专业及计算机软件学院本科生、专科生的“离散数学”课程的教材,以及毕业生考研复习用书,也可作为计算机教育工作者、研究开发技术人员的参考