《解题王》按讲编写,每讲分两个栏目:“方法技巧全归结”“本讲易错全剖析”。 方法技巧全归结 “解题方法”一网打尽,手把手地教给你知识和方法,使你 学会学习,让你事半功倍,真正实现高效学习。 本讲易错全剖析 这是最系统的错题剖析集录,这是无数成功者经验的累积, 这是帮你规避解题误区、迈向成功的终南捷径。 与其他教辅图书相比,《解题王》有如下几个特点: 一是操作性强。《解题王》的一个特色就是易于操作,直接训练解题能力; 传授规范的解题技巧和方法,使答案逼近高考试题的标准答案。按照《解题王》 介绍的方法技巧去解题,会收到立竿见影的效果。 二是质量高。《解题王》眼界高,高屋建瓴,宏观把握;例题精,灵活创新, 举一反三;讲解细,洞察规律,细致入微;题型全,对应
《数学问题解决:中新两国学生解决速度文字题的策略和错误》比较了中国和新加坡学生在解决速度文字题方面的表现差异,并从学生解决问题的策略和错误两方面进行了详细的比较分析,对速度问题、代数问题、比和比例的课程设计与教学均提出了有用的建议。 《数学问题解决:中新两国学生解决速度文字题的策略和错误》可作为数学教育研究者进行课程设计、教学研究和评估的参考用书。
本书收录了届(1983年)至第34届(2016年)AIME的全部试题,包括英文试题和中文译文,共855道题.对每一道试题均给出详解,有的还给出了多种解法,对部分试题还作了点评试题的点评不拘形式,或是问题的引申和推广,或是类题、似题的分析比较,或是多种解法的优化点评,或是试题的来源、背景.目的是使读者开阔眼界,加深对问题的理解,培养举一反三的能力.
序 言 不等式大量存在于数学的一切领域之中.本书的目的是呈现不等式理论中的一些基本的技巧.我们从 Mathematical reflections丛书,以及解题艺术网站, Gazeta matematica中精选出了不少问题.本书中的许多问题都体现了作者的特色。 在章中,读者将会遇到一些经典的不等式,其中包括幂平均和AMGM不等式, Cauchy- Schwarz不等式, Holder不等式,排序和Cheyshev不等式, Schur不等式, Jensen不等式等,这些不等式我们都给出了证明,并列举一个或几个例子,还给出它们有趣的、容易接受的解答。本书内容旨在拓展读者的视野:我们的读者包括高中的学生和教师、大学生,以及一切对数学怀有热情的人士。 在第二章中,我们致力于研究一些问题,这些问题分为入门题和提高题.每一节中的不等式都按照变量的个数:一个、两个、三个、四个和多个变量排序.每一个问题至少有一个完整的解答,很多
近年来,多目标进化算法(MOEA)的研究进入了快速发展阶段,越来越多的人开始从事MOEA新方法和新技术的设计与实现,MOEA的应用日益广泛。 本书比较全面地综述了MOEA的国际研究现状和发展趋势,介绍了MOEA的基础知识和基本原理;论述和分析了构造Pareto优解集的方法、保持进化群体分布性的方法和策略,以及MOEA的收敛性;讨论了目前国际上具代表性的MOEA以及高维MOEA、偏好MOEA和动态MOEA;探讨了MOEA的性能评价方法、MOEA的测试方法,以及MOEA测试实验平台。,讨论了用多目标进化方法求解约束优化问题,并分类概述了MOEA的应用及两个具体应用实例。 本书可作为计算机、自动控制和其他相关专业高年级本科生、硕士研究生、博士研究生,以及MOEA爱好者研究和学习的教材或参考书。