《这才是好读的数学史》介绍了数学从有记载的源头向*初的算术再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲和15至16世纪数学在顺应社会实践需要的基础上出现的深化、突破。在介绍数学历史的基础上,主要对30种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里德、欧拉等数学大师的风采,还特地穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学历史。
一个图形怎么才能有多于一个但又少于两个面? 一个高度精确的医药测试,有可能更容易得出错误的结论吗? 如果只能看到销售数据的*位数字,你怎么才能知道你的会计是不是在说谎? 在我们的生活中,数学无处不在,真实、有趣而美妙。当你开始用数学的眼光去观察世界,生活或许会变得更加简单而确定,你准备好了吗? 爱德华?沙伊纳曼, 沙伊纳曼定理 的命名人,知名的数学家和教育家,会在这本书中帮我们发现和解答身边有趣的数学问题,带领我们走进那个关于数字、图形和不确定性的美丽新世界。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
《数学史(第三版)》由国际科学史研究院院士卡尔 B.博耶和哈佛大学数学与科学史博士尤塔 C.默茨巴赫所著,博耶和默茨巴赫按照时间、空间和学科演化三个维度,把数学几千年的发展浓缩为这本引人入胜的编年史。本书涵盖了数学发展的整个历程,可以对数学获得一个完整的认知。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但作者并没有忽视中国文明、印度文明和阿拉伯文明的贡献。毫无疑问,这本书是一部经典的关于数学及创造这门学科的 数学家们的单卷本历史著作。进入21世纪,数学高速发展,很多学科获得突破性的进展,本书的第三版同时做了更新,使得数学史更加完整。特别值得一提的是,本书视野开阔,并没有局限于西方视角,对于古代中国的数学发展也有较为详细的介
《欢乐数学》 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 通过所有这些有趣的例子,奥尔林老师关注的是让所有人认识到数学真正的核心:思维。他告诉孩子和所有人,学数学不是为了无聊地秀智商,而是可以学会用数学思维看待这个世界的运行,发现数学的魅力。 《欢乐数学之疯狂微积分》 微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题
这是一本充满欢乐的数学书。作者本 奥尔林在做数学老师的十几年里发现,大多数学校都把数学这门课教得乏味透顶,他自己开始也是这样。有一天他在解释一道题时画了一条滑稽的小狗,惹得学生们哄堂大笑,这让他豁然开朗:孩子们看到一向聪明、专业的老师画的画这么 烂 ,突然觉得数学不再高高在上,而是变得可亲起来。从此,他的数学课充满了欢声笑语,学生有了飞跃的进步,并且获得了数学学习的秘籍 理解。 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成就一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成就。 在书中所描述的这些令人神往的人物中,艾萨克 牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲 热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米 诺特被阿尔伯特 爱因斯坦描述为数学史上重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟 拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍了其他
你会因为进行简单的计算而对数学感到厌烦吗?你会随着数学学习的深入,因为不知道如何解答而对数学学习产生畏难情绪吗?你会因为感到学习困难而认为数学没有意思,认为数学就是枯燥无味的吗? 本书会帮你解决这些问题,颠覆你对数学学习的印象。 本书共27个主题,作者将每道题目的第1问设计成稍微思考,或者看一下 解题方法 便可明白,从第2问开始设计成能够轻松 挑战 的形式。让读者保持一种节奏良好的游戏感。 由浅入深,由简单到困难,把题目设置成不同的阶梯挑战,慢慢建立数学学习信心;不同的解题角度,打开你的数学学习思路,只有你想不到没有你做不到,让你越做越有趣,彻底爱上数学学习。 快点来进行挑战吧,每天一个主题,获得 智慧带来的喜悦 。
《从一到无穷大》是当今世界最有影响的科普经典名著之一,20世纪70年代末由科学出版社引进出版后,曾在国内引起很大反响,直接影响了众多的科普工作者。本书根据原书最新版进行了修订,书中以生动的语言介绍了20世纪以来科学中的一些重大进展。先漫谈一些基本的数学知识,然后用一些有趣的比喻,阐述了爱因斯胆的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因)和宏观世界(如太阳系、星系等)方面的成就。全书图文并茂,幽默生动,深入浅出,适合中等以上文化水平的广大读者阅读。
《欢乐数学》 兴趣引导,学会用数学的眼光看世界。 数学家眼中的数学是什么样的?A4纸的尺寸为什么是合理的?蚂蚁从高处掉下来为什么摔不死?从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 《欢乐数学之疯狂微积分》 原理入门,形象解读微积分思想精髓。 牛顿和莱布尼茨到底谁的贡献大?用黄瓜片和牙签就可以演示如何求圆的面积和周长?福尔摩斯因为不懂微积分而破不了案?你还会知道为何月亮不会坠落、什么是拐点和指数级增长 《欢乐数学之游戏大闯关》 玩即是学,用游戏锻炼数学思维。 终极井字棋、豆芽游戏、收税员、星系棋 70多款世界各国经典数学游戏,从逻辑到概率,从几何到拓扑,从组合到博弈论。只需纸、笔、几个硬币,学会1分钟,好玩1辈子。自己玩、亲子玩、同学玩,在游戏中轻松领会
人类什么时候在绳子上打下个结? 为什么位女数学家会死于非命? 有可能把一个球体的内部翻转出来吗? 这些只是这本插图精美的书中涉及的众多引人深思的问题的一小部分。作者皮寇弗为我们展示了数学发展史重要的里程碑事件背后的魔力与神奇,包括人类曾经思索过的古怪的问题,从公元前一亿五千万年到的前沿突破。 数学已经渗入每一个科学领域,并且在生物学、物理、化学、经济、社会学和工程等方面扮演着无法替代的角色。我们可以用数学说明夕阳色彩分布的情况,也可以用来说明人类的大脑结构,可以帮助我们探索比原子还小的量子世界,也可以帮助我们描绘遥不可及的银河系。 在现实世界运用的著名计算公式和数学定理背后隐藏着数学家们一生的传奇故事。跟随皮寇弗踏上这趟数学之旅,探索数学历重要的250个里程碑事件,从蚂蚁计数到把
与历史上的数学天才一起挑战头脑体操! 315个经典游戏开发大脑潜能,呈现数学之美。 在《迷人的数学》中,世界著名智力游戏专家、百万级畅销书作者伊凡 莫斯科维奇,用他标志性的精彩图解,呈现了315个经典烧脑游戏,其中不仅有许多历史上著名的数学谜题,也有他自己设计的独特游戏。 作者也巧妙地将从史前时代到21世纪的数学史融入这些游戏题中,让你在挑战谜题、开启大脑潜能的同时,了解数学前进的轨迹,领略数学的迷人魅力。这是一本有观点、有故事的数学益智书,献给所有热爱美感、惊奇、挑战、数学与游戏的人。
《超图解秒懂数学》采用独特的图解方法阐释数学的基本原理,将抽象的数学知识形象化、生活化、趣味化,图文并茂,轻松培养读者的数学思维和图形化思维能力。全书分为数与式、图形、方程式与函数、概率与统计四大版块,全面涵盖了从小学到高中的数学基础概念,并配有各年级学习内容对照表,方便读者按需学习。 本书在编排上充分考虑到各类读者群体的需求。对小学生来说,父母的辅导不仅能够提升他的成绩,而且能够加深亲子感情,因此对于加法、减法、分数、小数等小学知识,本书运用全彩的数字、有趣的插图和例题,吸引孩子的兴趣,让父母和孩子都能够快乐地沉浸在数学世界中。对初高中生而言,想要取得好成绩,自学不可或缺,因此对于方程、函数、概率、微积分等初高中数学知识,本书利用简单的插图、生活化的例题、清晰的
本书是享誉世界的科普经典著作,不仅影响了众多科研和科普工作者,更是将很多 门外汉 领进了自然科学的大门。 全书用数学的发展和公式的演进作为线索,从数学的诞生讲到生命和宇宙的诞生,融入了物理学、生物学甚至哲学等科学发展的诸多领域,不仅为读者描绘一幅全面的宇宙图景,更是向读者传递了科学的思维方法、科学的认识角度、科学的世界观。
《九章算术》是人类科学史上应用数学的 算经之首 ,也是中国古代算法的扛鼎之作,更是一部与《几何原本》并列为世界两大数学体系的代表作。全书总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。 《九章算术》提出正负数的概念,特别是负数概念的提出,是人类关于数的认识的一次重大飞跃。在印度,直到7世纪才出现负数的概念;而欧洲比印度还晚1000年,直到17世纪才有人提出负数的概念。 《九章算术》提出 盈不足术 ,即用两次假设,可以把一般方程式化为盈不足问题,用 盈不足术 求解。而这一解法,直到13世纪才由阿拉伯人传至欧洲,被欧洲人称为 契丹算法 (即 中国算法 )。 《九章算术》系统叙述了分数的约分、通分和四则运算法则,提出了 线性方程组 的概念,并系统地总结了它
《自然哲学的数学原理》书中牛顿的成就多到数不胜数,明显的例子就是牛顿运动定律,这一定律至今仍然传授于世界各地。牛顿为微积分提供了概念基础,尽管他在书中没有明确使用微积分,但精通数学的读者可能会猜测牛顿正在使用一种新技术。至关重要的是,牛顿从他的平方反比定律推导出了开普勒三定律。他证明了开普勒方程没有代数解,并提供了计算方法。在牛顿这部划时代伟大的著作中,读者更能欣赏到他在物理学之外的卓越成就。牛顿在本书中的只言片语,如今也将被成千上万的作者呈现在无数论文中,这是科学的胜利。牛顿不仅解决了长期以来如何求证行星轨道的难题,而且还用他的理论解释了很长时间里独立且无法解释的现象:潮汐、岁差、月球的轨道、单摆模型和彗星的出现。在本书中,牛顿证明了现代科学的标志是什么 将尽可能多种不同
莱昂哈德 欧拉的多面体公式 V-E F=2 被数学家们誉为第二优美的数学定理。从足球和宝石到美妙的穹顶建筑,这一公式描述了许多物体的结构。本书围绕欧拉多面体公式及其数学思想,从古希腊数学讲起,直到当代拓扑学的前沿研究,介绍了这一公式的发现及其对拓扑学研究的深远影响。书中包括丰富的插图与例子,展示了多面体公式的许多优雅而出人意料的应用,例如说明为什么地球上总有一些无风的地方,如何通过数树来测量林地的面积,以及为任何地图涂色需要多少支蜡笔,等等。在书中,读者将看到一群质疑、完善多面体公式和为这个非凡定理的发展做出贡献的杰出数学家,在数学史的长河中,他们都多面体的研究和拓扑学的发展做出了自己的贡献。 本书适合对数学,尤其是拓扑学及数学史感兴趣的读者阅读。
微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题 爱、风险、时间,以及重要的事情 变化 。 书分为 瞬间 和 永恒 两部分,从夏洛克 福尔摩斯到马克 吐温,它将发掘微积分、艺术、文学和一只与猫王同名的柯基犬之间的联系。 你将看到奇怪的符号、疯狂跳跃的逻辑以及微积分的真正用途。无论是数学恐惧症患者还是数学发烧友,这都将是一本影响终生的书。
由数学大师和著名数学家亲自执笔撰写的这套数学小丛书是我国数学普及读物中的精品,曾激发一代青少年学习数学的兴趣。书中蕴涵的深刻而富有启发性的思想,促进了无数中学生在求学的道路上健康成长。
《几何原本》是现代数学的基础,大约成书于公元前300年。被称为有史以来最为成功的教科书。 《几何原本》全书共13卷,1-6卷的主要讲平面几何,7-8卷主要阐述数论,10卷讲不可公度线段,11-13卷主要讨论立体几何。19世纪之前,如果说有一门学科的知识一直被当作 真理 的完美典范的话,那它就是欧几里得几何。它被普遍作为一种绝对精确、永远有效的推理结构。 后世的许多伟人都称自己受到《几何原本》的巨大影响。 牛顿的《自然哲学之数学原理》写作结构完全仿造《几何原本》。爱因斯坦曾言: 第一次看到《几何原本》这本书就惊为天人。 徐光启首次将《几何原本》翻译为中文时,盛赞 能精此书者,无一事不可精;好学此书者,无一事不可学。
无
《烧掉数学书》是一本全新概念的数学科普。这本书的一大特点是抛开传统晦涩的数学符号和讲述方式,另起炉灶,从零开始,用年轻人易于接受的语言阐释高深的数学知识和概念。这本书打破了数学教育界认为在讲授微积分之前必须花大量时间和精力学习微积分的严格化基础的惯例,从理解微积分本身的用途和方法着手,反过来再提出微积分基础严格化的问题,从而顺理成章地引出极限和逼近等概念。这种方法更符合人们的学习和认知规律,让人能自然而然地接受和理解这些抽象的概念和技巧的源流和必要性,从而为深入的学习打下好的基础。
本书集结了丘成桐先生近半个世纪以来探讨数学和人文教育的系列文章,呈现了一位天才数学大师沟通数理与人文的努力与实践,透射出其追求真与美的数学观、人生观,一字一句皆饱含着对真理的热爱、对美的追求以及对祖国科学事业的殷殷之情。 丘成桐在书中分享了毕生研究数学、传授数学的经历和经验,讲述了世界范围内数学家群星闪耀的历史传奇,揭秘了 卡拉比-丘流形 的诞生历程和几何奥妙,也有大量篇幅谈及中国教育的现状和问题。 读者可在书中了解这位誉满世界的杰出数学大师的治学心迹与家国情怀,感受天才头脑的思维活力和深厚的人文底蕴,见证他追寻学问的理性以及对人才教育的计之深远。
《中国科普大奖图书典藏书系》囊括新中国成立以来,著名科学、科幻作家经典获奖作品,展现科学之真、善、美,传播知识、激发兴趣、启迪智慧!本书是丛书系列之《数学百草园》。本书分数学人物、文史建筑体育社科、迷人的数与数的变换、数学魔术与戏法、数学之美、巧解妙题提高智力、数学广角镜七个模块。
《思考的乐趣:Matrix67数学笔记》内容大多是从作者6 年多以来积累的上千篇博客中节选而来的,分为 生活中的数学 、 数学之美 、 几何的大厦 、 精妙的证明 和 思维的尺度 五部分。书中基本不涉及高深的数学理论,但是内容新颖、时尚,既有与现实生活联系紧密的应用型话题,又有打通几何、代数联系的富有启发性的讨论,还间或介绍了一些数学难题的全新研究进展,信息十分丰富。 《思考的乐趣:Matrix67数学笔记》 是广大数学爱好者的美味佳肴,只要具备简单数学基础即能阅读。