这是一本需要 动手实践 的图书,通过带领大家从零构建一款分布式向量数据库,让大家透彻理解向量数据库的技术原理和实现细节。 本书共分为三大部分,内容由浅入深、循序渐进。 第一部分 认识向量数据库 (第1~3章)是基础篇,介绍向量数据库的基础知识,涵盖向量及数据库的基本概念、向量数据库的发展历程和核心功能。 第二部分 构建向量数据库 (第4~6章)是核心篇,详细介绍如何从零开始构建并优化向量数据库,巨细靡遗地展示数据库内核的技术实现细节并辅以代码示例、技术架构图等,旨在让大家真正实现动手写向量数据库。 第三部分 向量数据库的实践与展望 (第7~8章)是结束篇,通过实践案例展示向量数据库在AI应用中的使用方法,并尝试勾勒向量数据库的未来。 本书面向数据库开发人员、数据库管理员、数据库架构师等数据库从业人
本书的主要内容有:熟悉Spark的编程模型和生态系统。学习数据科学的一般方法。检查分析大型公共数据集执行步骤的完整性。发现哪些机器学习工具对特定问题有帮助。探索可适应多种用途的代码。
数据是什么?如何应用数据?如何把数据变成更有价值的东西?本书主要适合刚开始使用数据的读者,能让他们对数据的含义、价值及用途有清晰的认识和了解,本书目的是介绍数据的相关知识,同时鼓励人们参与到日益增多的与数据有关的对话中。 本书通过介绍简单数据相关知识,即从一个总体目标、两种思维系统、三大应用领域、四种数据尺度、五种数据分析方法、六种数据展现方式、七种数据活动、八个提前问的问题分别展开阐释数据和分析的方法和思维方式。
K线图已经成为金融交易平台和图表程序的关键组成部分。使用这些图表,交易者们从中学习基础模式,用于解释价格走势历史,并预测未来市场。这本详细的指南向投资组合经理、量化分析师、策略师和分析师展示了如何使用Python来识别、扫描K线图模式,根据模式进行交易,并回测K线图模式的盈利能力。 金融作家、交易顾问和机构市场策略师Sofien Kaabar在本书中展示了如何创建K线图扫描器和指标,通过这些指标,我们可以比较不同模式的盈利能力。通过这本实践指南,你还将探索一种类似K线图的新型图表系统,以及从未介绍过的新模式。 通过这本书,你将学会: 创建并理解经典和现代K线图模式所需的条件。 学习这些模式背后的市场心理。 使用一个框架来学习如何进行交易策略的回测。 探索不同的图表系统并理解它们的局限性 在Python中导入不同时间框架的OHLC
继煤炭、钢铁和石油之后,数据正在成为重要的国家战略资源和国家间竞争的战略工具。数据主权是国家主权在网络空间的逻辑延伸和核心表现,关乎数据安全、个人隐私和数字经济发展,是国家安全和发展的核心利益所在。 《数据主权与治理模式辨析》围绕数据主权及治理模式进行剖析,调研全球主要经济体的数据主权治理模式演化过程,在厘清数据主权内涵和概念、借鉴国外数据主权治理模式的基础上,以主权平等、合作共治为原则,从跨境数据流动、数据本地化存储、数字贸易、 长臂管辖 及其反制策略等方面,分析比较各国数据主权治理的模式及其实施效果,构建匹配中国数字经济和数据资源体量、符合中国数据规制要求,兼顾各国利益的数据主权治理规则,推动全球数字经济全面健康发展,是中国数据治理的重要使命和时代担当。
数据科学伦理是关于人们在进行数据科学方面的行为的道德规范。到目前为止,数据科学主要应用于企业和社会并产生了积极成果。 然而,就像任何技术一样,数据科学也带来了一些负面后果:隐私侵犯的增加,对敏感群体的数据驱动的歧视以及使用不可解释的复杂模型做出决策。 没有哪个数据科学家和业务经理是天生不道德的,只是他们没有接受过培训来考虑他们在工作中的伦理问题 本书旨在填补这个越来越重要的空白和解释不同的概念和技术,帮助读者理解从k-匿名和差别隐私到同态加密和零知识证明等技术已可以解决隐私侵犯问题,消除敏感群体歧视和提供各种可解释的人工智能。 现实生活中的警世故事进一步说明了数据科学伦理的重要性和潜在影响,包括种族主义机器人的故事、搜索审查和人脸识别等。本书中穿插着结构化的练习,提供假设的场景和
本书通过大量案例研究介绍数据可视化的基础知识,以及如何利用数据创造出吸引人的、信息量大的、有说服力的故事,进而达到有效沟通的目的。具体内容包括:如何充分理解上下文,如何选择合适的图表,如何消除杂乱,如何聚焦受众的视线,如何像设计师一样思考,以及如何用数据讲故事。 本书适合所有需要用图表展示信息和数据的人士阅读。
本书示范应用的SPSS软件和R软件,是当前量化研究中的主流。 本书将研究方法、统计分析和软件操作三方面的主要知识进行了的融合,对20多种统计分析技术的讲解都配有图示清晰、步骤详细的范例,十分便于读者学习领会、照猫画虎。 本书的内容组织方式相对于将统计学和软件应用分别成书的做法,更能帮助读者在整体上对量化研究融会贯通。在难度的把握上,立足于为量化研究的初学者服务,材料选择、内容设计都比较基础,因此,完全可以作为社会学、心理学、管理学、教育学等学科的本科生和研究生的量化研究方法课程的教材。
本书比较全面系统地介绍了数据仓库(Data Warehouse)、联机分析处理(OLAP)、数据挖掘(Data Mining)等3个层次的基本概念、原理和应用技术。全书分成4篇,基本原理篇和设计建模篇的内容主要包括:数据仓库的基本概念、体系结构、创建过程、建模设计、项目规划,OLAP的基本概念、ROLAP和MOLAP的实现原理、OLAP模型设计,数据挖掘的基本概念、基本过程、常见模型和算法。产品介绍篇介绍了现有数据仓库厂商产品工具的基本情况,并对产品选择进行了一些分析。应用实践篇结合电信领域的实例,介绍了数据仓库项目在设计和实施中的关键问题。 本书的编写以理论联系实际为原则,内容系统全面,对于从事数据仓库研究、设计、开发等工作的人员具有宝贵的参考价值,对于需要了解数据仓库技术的系统集成人员、系统分析师、系统设计师也具有的参考价值。
零基础入门,让读者轻松、快速地掌握使用PowerBI创建和设计报表的整体流程。本书为读者提供了一个轻松愉快的阅读学习体验,全彩印刷、版式灵活、颜色清爽、内容优选、案例典型、视频赠送。本书包含大量案例,读者可以边学边练,书中的大多数3级标题以案例名称命名,既便于读者从目录中快速找到相应的案例,又能让读者了解每个知识点、每项技术的实际应用场景,从而实现技术与应用的无缝对接。为了便于读者学习和练习,本书附赠所有案例的源文件和重点案例的多媒体视频教程。本书适合想要学习使用PowerBI或PowerBIforExcel进行数据分析和报表制作的读者。如果读者对PowerBI不熟悉或从未使用过PowerBI,那么学习本书可以让您在短时间内快速掌握PowerBI的使用方法,并使用它来解决实际应用中的问题。对于有使用经验的读者来说,学习本书有助于梳理PowerBI的知