全书分为三大部分: 主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第1章即瞄准目标:可靠性、可扩展性与可维护性,如何认识这些问题以及如何达成目标。第2章我们比较了多种不同的数据模型和查询语言,讨论各自的适用场景。接下来第3章主要针对存储引擎,即数据库是如何安排磁盘结构从而提高检索效率。第4章转向数据编码(序列化)方面,包括常见模式的演化历程。 我们将从单机的数据存储转向跨机器的分布式系统,这是扩展性的重要一步,但随之而来的是各种挑战。所以将依次讨论数据远程复制(第5章)、数据分区(第6章)以及事务(第7章)。接下来的第8章包括分布式系统的更多细节,以及分布式环境如何达成一致性与共识(第9章)。 主要针对产生派生数据的系统,所谓派生数据主要指在异构系统中,如果无法用一个数
本书完整全面地讲述数据挖掘的概念、方法、技术和近期新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离
本书主要以OpenTSDB的很新版本(2.3.1版本)为基础进行介绍。章从OpenTSDB的入门开始,介绍市面上多种时序数据库和云端时序数据库,OpenTSDB的基础概念、源码环境搭建及Grafana的基本使用等。第2章主要介绍OpenTSDB的网络层,涉及Java NIO基础、Netty基本使用,分析了OpenTSDB网络层的架构和实现。第3章介绍OpenTSDB中UniqueId组件的原理,主要讲解如何实现UID与字符串之间的映射。第4章介绍OpenTSDB如何实现时序数据的存储及相关优化。第5章介绍OpenTSDB如何实现时序数据的查询,其中分析了OpenTSDB查询中每个步骤的实现。第6章和第7章主要介绍OpenTSDB中的元数据及Tree结构的实现和功能。第8章主要分析OpenTSDB中的插件及工具类实现原理。
近年来,随着Web技术的发展和应用的普及,大量用户将线下行为转移到线上进行,并且通过各种社会媒体随时随地进行社会交互和情感表达。这些海量的社会行为形成的大数据,催生了社会计算这个新的跨学科的研究和应用领域。《清华大学学术专著·社会计算:用户在线行为分析与挖掘》在大数据的时代背景和社会计算的框架下,介绍从大量用户在线行为数据中发现其中隐含的用户行为模式和兴趣偏好的方法和技术。全书主要内容分为7个部分,分别介绍用户在线搜索行为、网上购物行为、浏览行为、社会标注行为、评论行为以及社交行为等方面的数据分析技术和方法,涉及搜索意图的分析、购物模式的发现、周期行为的挖掘、标签的有效聚类、评论意见的挖掘、用户偏好的发现、个性化方法、链接分析以及社会网络的分析方法等研究内容。 《清华大学学术专