本书系统地介绍过程挖掘的原理、方法、技术及其在教育领域的应用,重点介绍基于Petri net 的形式化挖掘技术和基于语义的挖掘技术,并举一个完整的挖掘大学校园学生行为特征的 案例。本书既有完整的理论框架又有专门的教育领域实践应用,可供计算机、大数据、人工智 能等相关专业领域的学生和研究人员参考。
编写本书的目的是使读者可以在最z短时间内掌握Excel 数据分析。本书以数据分析的整体流程和知识难易度来安排各章内容及其在全书中的次序,每一章内容都紧密围绕数据分析展开。全书共10 章,每天学习一章,10 天就能学会Excel 中的大多数数据分析工具的用法和技巧。 本书的主要内容包括数据分析的基本概念和流程、Excel 中的数据分析工具的功能和特点、导入外部数据和输入不同类型的数据、修复有问题的数据、设置数据格式、排序、筛选、分类汇总、数据透视表、公式和函数基础知识、提取和格式化文本、汇总和统计数据、计算日期、模拟分析、单变量求解、规划求解、分析工具库、图表的基本概念和基础操作、创建不同类型的图表、导入和刷新数据、使用Power Query 编辑器整理数据、使用Power Pivot 创建数据模型、创建计算列和度量值、销售分析和客户分析等
《基于Python的大数据分析基础及实战》是一本介绍如何用Python 3.6进行数据处理和分析的学习指南。其主要内容包括:Python语言基础、数据处理、数据分析、数据可视化,以及利用Python对数据库的操作、自建Python应用库的共享发布等。 《基于Python的大数据分析基础及实战》分3个部分:第1部分为基础知识,第2部分为实战案例,第3部分为拓展与延伸。本书内容丰富,讲解通俗易懂,非常适合本科生、研究生,以及对Python语言感兴趣或者想要使用Python语言进行数据分析的广大读者。
大数据时代,对数据进行统计、分析和学习变得尤为重要,并被应用在各方各面,如无人驾驶汽车、AlphaGo、机器学习和人工智能等,而统计思维也成为大数据时代的基本思维。不仅这些高科技以统计学为基础理论,大数据时代的每个人都应该懂点统计学,学会读懂并分析数据,学会让数据说话,让数据为自己服务。《大数据时代的统计学思维:让你从众多数据中找到真相》就是大数据时代统计学思维的科普书籍,全书共10章,第1章用几个有趣好玩的例子引导读者进入统计学的世界,并调动读者学习统计学的兴趣。第2~10章结合生活和工作中的例子全面介绍统计学原理和方法,涵盖统计学中的数据收集、数据处理和统计推断等内容,既有抽样调查、概率、相关性分析、回归分析等实用统计方法,也有大数定律和中心极限定理等基本统计学原理。用实例引导理论,通俗
本书从初学者易于理解的角度,以通俗易懂的语言、丰富的实例、简洁的图表、传统和现代数据特征的对比,将大数据这一计算机前沿科学如数家珍地娓娓道来。既介绍了大数据和相关的基础知识,又与具体应用有机结合起来,并借助可视化图表的画面感立体地为读者剖析了大数据的技术和原理,非常便于自学。本书内容包括大数据概论、大数据采集及预处理、大数据分析、大数据可视化、Hadoop概论、HDFS和Common概论、MapReduce概论、NoSQL技术介绍、Spark概论、云计算与大数据、大数据相关案例等内容。本书既可以作为想了解大数据技术和应用的初学者的教材,也适合作为培训中心、IT人员、企业策划和管理人员的参考书。
在新媒体时代,如果对新闻报道、网上搜索的结果或者所谓的 专家告知 不加思考地完全相信,那你就等着上当受骗吧! 本书围绕当今*受瞩目的大数据科学理论,通过日本政府公布的公开数据,集中针对访日游客的增加、舆论调查的可靠性、 安倍经济学 的成果、东日本大地震后的状况、相对贫困、失业率的下降、年轻人远离ХХ、全球变暖问题、减肥、恩格尔系数的上升等10个主题进行数据解读,帮助读者模拟体验数据读取方法,提高理解和分析数据的能力,挖掘出数据背后隐藏的真相。 作为 大数据分析 的超级入门书,即使不擅长数学、不了解统计学的人,读完本书也可以彻底掌握数据解读方法!
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。