本书全面介绍车辆轨迹数据的处理、分析与可视化方法,并深入探讨了基于Python的车辆轨迹数 据处理技术,旨在帮助读者快速掌握车辆时空轨迹数据处理的基本方法和编程技巧,同时提供丰富的实际案例和技术解决方案,覆盖了从数据采集到深入分析的完整技术链条,是交通时空大数据领域车辆轨迹数据处理分析的全面指南。 本书内容涵盖从车辆轨迹数据的基本特征、采集原理到预处理、质量分析、可视化,再到高级应用如路网匹配、排放计算、多智能体仿真,以及特定案例分析如电动汽车充电需求识别和无人机航拍轨迹数据分析。 本书适合计算机相关专业的学生、数据分析师、研究人员以及技术开发人员阅读。
数字技术为企业的管理方式带来颠覆性变革,我们正在经历从依赖企业管理者解读数据并做出业务决策,到由算法通过计算数据做出分析和判断,然后自动指挥业务活动的转变。作为企业管理者,需要思考如何顺应时代趋势,利用数字技术,实现企业管理方式升级,提升管理效率,降低管理费用,提高企业竞争力。撰写本书的主要目的是,帮助企业体系化地推进数字化管理升级。本书的主要内容包括数字技术驱动企业管理方式升级、企业数字化管理体系的四条线、企业数字化管理体系建设七步法、企业数字化管理体系建设实战、企业数字化管理体系建设中的瓶颈与难点、企业数字化管理体系建设的技术架构,以及未来数字智能技术展望。
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
本书面向数学与工程计算,主要讲解了MATLAB 2017a软件基础、初等数学专题概要、高等数学基本问题、线性代数与矩阵论基本问题、概率论与数理统计基本问题、数值分析基本问题、CASIO fx 991CN X(中文版)函数科学计算器简介七方面的内容。本书适合大中专院校理工科学生学习使用,也可供广大科研人员、学者、工程技术人员及MATLAB专业人员参考。
《IBM SPSS数据分析实战案例精粹(第2版)》以IBM SPSS Statistics 24为工具,提供了医疗、金融、保险、汽车、快速消费品、市场研究、互联网等多个行业的数据分析/挖掘案例,基于实战需求,详细讲解了整个案例的完整分析过程,并将模型和软件的介绍融于案例讲解之中,使读者在阅读时能突破方法和工具的限制,真正聚集于对数据分析精髓的领悟。本书还一并提供案例数据的下载,读者可完整重现全部的分析内容。 《IBM SPSS数据分析实战案例精粹(第2版)》适合从初学者到专家各个级别的数据分析人士阅读,包括需要提升实战能力的数据分析专业人士,在市场营销、金融、财务、人力资源管理中需要应用数据分析的人士,从事咨询、科研等工作的专业人士,同时也可以作为各专业的本科和研究生学习数据分析应用的参考书。
本书是深入研究互联网思维的经典之作,从互联网思维的定义到互联网思维应用的具体案例表现。作者深入浅出、条分缕析,全面阐述互联网思维的内核与精神,逐一点评当前关于互联网思维的各种观点。本书从初级的互联网思维应用到高端的粉丝经济,平台建设,自媒体营销的方法都有详细讲解介绍。让读者了解什么是互联网思维的同时还能学会把互联网思维运用到自己的工作学习已经生活中 进入大数据时代,让数据开口说话将成为司空见惯的事情,本书将从大数据时代的前因后果讲起,全面分析大数据时代的特征、企业实践的案例、大数据的发展方向、未来的机遇和挑战等内容,展现一个客观立体、自由开放的大数据时代。
本书精讲数据结构与算法,对常见的算法及实现代码进行详细讲解,并配合具体的图表和教学视频,使读者轻松掌握数据结构知识并深入理解其中的算法思想。 本书共分8章,内容包括线性表、栈、队列、串、数组和广义表、树、图、查找、排序等。本书知识点涵盖全面,案例典型。本书习题大部分来自各大名校考研和 软件公司的笔试面试题目,是作者多年来的教学实践经验的总结。本书案例代码全部在Visual C++开发环境运行通过,并配套教学视频,方便读者自学。 本书适合C语言数据结构与算法的初学者、数据结构与算法课程考试的学生、考研人员、算法竞赛选手,也可以作为高等院校和培训机构计算机相关专业师生的教学参考书。
空间关联和并置模式被统称为空间模式,空间模式发现是空间数据挖掘中重要的任务之一。本书围绕挖掘的目标(如关联或并置)和对象(如经典数据、区间数据、不确定性数据或模糊数据等),系统地介绍了作者在空间模式挖掘领域的主要研究成果。内容包括:绪论;空间模式挖掘基础;空间关联规则挖掘;经典数据的空间colocation模式挖掘(1)、(2);不确定性数据的空间colocation模式挖掘;区间数据的空间colocation模式挖掘;模糊数据的空间colocation模式挖掘;加权colocation模式及其挖掘算法;负colocation模式挖掘及SCPMiner开发等。 本书可供高等院校计算机及相关专业的本科生、研究生参考,对从事计算机开发及应用的科技人员及开发人员也有较大的参考价值。
《大数据挖掘》一书系统介绍了大数据挖掘的概念、原理、技术和应用。包括:认识和理解大数据;大数据挖掘需要的相关技术(大数据获取技术、大数据存储管理技术和大数据可视化技术等);大数据计算框架;大数据挖掘任务(关联分析、聚类分析、分类分析、演变分析、特异群组分析和异常分析);大数据应用实现;以及大数据挖掘工具。 《大数据挖掘》对大数据挖掘技术进行了全面而细致的定义和归纳,并将向读者展现该领域*研究热点和技术。关于大数据应用实现章节的内容将采用作者实际主持和完成的大数据挖掘项目为实际案例,阐述大数据挖掘应用实现过程中的问题、解决方案和取得的成果。 《大数据挖掘》一书的主要读者是数据科学专业的高等学校学生及老师,从事数据和信息质量工作的研究人员、技术人员、管理人员和决策人员
本书从初学者的角度循序渐进地讲述了MATLAB R2018b的基础知识和应用,全书共分2篇,第1篇为MATLAB基础知识,详细介绍了MATLAB R2018b概述、MATLAB使用初步、MATLAB数值计算及符号计算、MATLAB计算的可视化和GUI设计、 MATLAB程序设计、Simulink仿真、MATLAB应用程序接口等基础知识。第2篇为MATLAB应用,分别介绍了MATLAB工具箱概述,MATLAB在图像处理、优化设计、数字信号处理、控制系统、电力系统、深度学习中的应用,尤其对于MATLAB R2018b全新增加的深度学习功能进行了深入介绍,读者可在基础知识学习的同时进行上机练习。 本书内容深入浅出,简明扼要,结构清晰,方便读者选择学习阅读,适合广大科研及工程技术人员使用,也可作为高校理工科学生的专业教学用书和参考用书。