本书系统地介绍了岩爆试验综述、大数据人工智能分析方法框架、数据采集与预处理技术、压缩算法、多源异构融合算法、大数据可视化分析,且结合实际工程介绍了岩爆实验大数据AI处理系统。本书深入探讨了岩爆试验大数据的人工智能分析方法,系统阐述了以人工智能方法研究岩爆机理,为读者提供了一种全新的视角和解决问题的思路,填补了国内外相关领域的空白。
如今,推荐算法已经普遍应用于在线各个领域和场景,越来越多的商品、服务、用户通过推荐算法高效地连接彼此,每个人都享受到更加个性化的内容和服务。推荐已深刻地改变了我们与世界连接的方式。 本书聚焦在产品运营的角色上,探讨产品运营人员应该如何理解推荐算法,如何在不同的功能场景下应用推荐算法,如何从平台业务的角度对算法结果进行干预和再平衡。此外,本书着重于阐述不同功能场景下推荐的应用,辅以内容、电商、社交等业务下的应用实例。在每个章节中,都会枚举市面上已有产品功能或作者本人经历过的业务实践,以期给读者提供可以实操落地的借鉴。
本书内容共分为7章。 第1章介绍了数据分析的应用背景、研究内容和基本概念。第2章聚焦于数据的可视化方法,并例举了现有网络工具的使用方法,本章内容几乎不需要编程基础。第3章着眼于数据分析与数学优化建模的联系,并介绍了常用的梯度下降优化算法。第4章凸显了数据降维和特征提取的必要性,给出了一些常用的降维算法。第5章和第6章详述了无监督学习和有监督学习的典型算法及示例。第7章介绍了深度学习的鲁棒性问题,这是当前数据分析的前沿领域。本书 的附录部分简述了深度神经网络的基本原理以及PyTorch开发框架。