《中文版 SPSS 28 统计分析从入门到精通(实战案例版)》详细介绍了 SPSS 28 在数据统计分析方面的使用方法 和应用技巧,它是一本 SPSS 基础教程,同时包含了大量的 SPSS 视频教程。 《中文版 SPSS 28 统计分析从入门到精通(实战案例版)》全书共 20 章,内容包括 SPSS 28 概述、初识 SPSS 28、SPSS 数据结构、数据管理、数据分类、数据清洗和数据加工、数据计算、数据分析图表、数据分布的特征分析、参数检验、非参数检验、均值分析、单因素方差分析、多因素方差分析、相关性分析、列联表相关性分析、回归分析、聚类分析、判别分析和电力中断数据分析实例等知识。通过丰富的实例,详细介绍了 SPSS 数据统计分析的全方位知识。本书在讲解过程中理论联系实际,并配有详细的操作步骤,图文对应,可以提高读者的动手能力,并加深对知识点的理解。 《中文版 SPSS 28
本书以案例的形式,介绍从思维模型分析到场景实践的数据分析方法。全书围绕 数据分析 与 运营增长 两大关键要素,在系统介绍数据分析思维、数据分析方法、数据采集技能、数据清洗技能等基础知识的同时,以问题为导向,解读运营与增长的关键性业务内容,在获客、激活、留存、变现、自传播循环等各个核心运营环节展开数据分析实战。 本书提供案例相关数据集与源码包,适合数据分析、产品运营、市场营销等行业有数据分析具体业务需求的人士阅读,也适合相关专业的师生阅读。
伴随人类社会数字化进程的深入,数据正不断渗透于日常的生活、生产、分配、流通、消费等各个环节,对人类社会的影响日益凸显。数据已成为继土地、劳动力、资本、技术之后的第五大生产要素,对其他生产要素的整合能力也使其成为既有要素中比较重要的和难以替代的关键要素,并成为值得重点讨论的时代性议题与理解数字时代的基本入手点。 对数据要素的理解涉及多学科、多视野,本书从与数据要素关系较为密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。
一本书如果没有作者自己的观点,而只是知识的堆叠,那么这类书是没有太大价值的。尤其在当前网络发达的时代,几乎任何概念和知识点都可以从网络上查到。但是有一点你很难查到,那就是统计分析的思路和观点。比如,你可以很容易地在网上查到什么是线性回归,但你却查不到怎么 做 线性回归分析,在你遇到实际数据时仍然不知道如何分析。在《白话统计》中,你可以获得这些思路和观点。尽管这些观点未必是所有人都认可的,但根据笔者多年的分析经验,它们在实践中通常是奏效的。《白话统计》凝结了作者十多年来对统计分析的理解,对各种方法的介绍采用全新的理念和思路,不再是介绍方法本身,而是试图将各种方法之间的联系阐述清楚;不再是介绍方法如何计算出结果,而是尽量说明方法背后的思想。当然,本书同时提供了如何实现结果的软件(
本书以 实战、实用、实效 为原则,充分考虑智慧公安、智慧交通、智慧金融、智慧城市等用户的大数据应用痛点,紧贴大数据实践的业务场景,汇集数据分析模型全生命 周期的关键应用技术,包括数据准备、工作表管理、可视化图表创建、数据大屏制作、数据模型创建和自定义算子设计等内容。 本书内容通俗易懂,案例丰富,图文并茂,同时配有教学视频和建模平台,适合初级、中级数据分析师和广大数据分析爱好者参考学习。通过本书,读者无须具备计算机、 软件开发等专业知识背景,即可熟练掌握大数据分析建模的基本方法和技巧。
内容简介商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项技能。 作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。 本书分为6 篇,共17 章,其中第1 篇是概念篇,讲述商业分析的基本概念;第2 篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3 篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4 篇是高阶篇,讲述如何应对复杂的商业难题;第5 篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6 篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。 本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
本书对可视化技术、交互技术以及数据分析方法进行了系统和全面的讲解。介绍了交互式可视化数据分析解决方案的设计标准,论述了设计中的影响因素以及工作流程的检验方法。读者可以从中了解可视化编码的基础知识,以及用于多元数据、时间数据、地理空间数据和图形数据等方面的众多可视化技术。 书中专门用一章的内容来介绍与可视化效果互动的常规概念,并且利用图示来说明现代交互技术如何推动可视化数据分析的发展。针对如今庞大而复杂的数据,本书涵盖了自动化分析计算支持可视化数据分析的相关内容,另外还介绍了多屏幕环境下的高级可视化概念、数据分析过程中的用户指南以及渐进式可视化数据分析等技术。 作者用简洁明了的术语以自上而下的视角解读了交互式可视化数据分析。众多真实案例和丰富的插图将使学生、本领域专家、数据密
本书是热销书《SQL基础教程》的作者MICK为志在向中级进阶的数据库工程师编写的一本SQL技能提升指南。全书可分为两大部分。部分介绍了SQL语言不同寻常的使用技巧,带领读者重新认识CASE表达式、窗口函数、自连接、EXISTS谓词、HAVING子句、外连接、行间比较、集合运算、数列处理等SQL常用技术,发掘它们的新用法。这部分不仅穿插讲解了这些技巧背后的逻辑和相关知识,而且辅以丰富的示例程序,旨在帮助读者从面向过程的思维方式转换为面向集合的思维方式。第二部分介绍了关系数据库的发展史,并从集合论和逻辑学的角度讲述了SQL和关系模型的理论基础,旨在帮助读者加深对SQL语言和关系数据库的理解。此外,本书很多节的末尾设置有练习题,并在书末提供了解答,方便读者检验自己对书中知识点的掌握程度。
本书以统计学史上著名人物的伟大成就为脉络,将数据分析这一学科的发展历程娓娓道来。从开普勒仰望星空拉开统计学序幕,贝叶斯提出主观概率,到人工智能、深度学习逐步渗透今天的日常生活。本书带领读者在数据科学的熠熠星光下,看透大数据的深邃内核。
《轻松学 MySQL数据库从入门到实战(案例 视频 彩色版)》是基于编著者三十余年 数据库应用技 术 教学实践和教材编写经验编写的,结合数据库技术和MySQL数据库的发展趋势,从初学者容易上 手、快速学会的角度,采用Python MySQL开发环境,用通俗易懂的语言,深入浅出、循序渐进地讲解 MySQL数据库系统的特点及应用开发技术,实现手把手教你从零基础入门到快速学会开发MySQL数据 库系统应用项目。 《轻松学MySQL数据库从入门到实战(案例 视频 彩色版)》由 数据库基础知识 数据库操作技 术 数据库应用技能 基于Python的数据库应用系统开发 四篇组成,以一个分布式数据库的应用实例 为主线,讲述了数据库应用系统开发的知识。全书共18章,内容包括: MySQL数据库基础知识,数 据库设计和建模,数据库操作,以及索引、表、视图的创建及应用,SQL数据定义及操纵
在大数据爆发的短短10多年中,NoSQL成为处理大数据必须掌握的热门核心技术之一。《NoSQL数据库入门与实践(基于MongoDB、Redis)(第2版)》正是在这种背景下应运而生的,本书结合MongoDB、Redis和测试工具等全面介绍NoSQL数据库技术,是一本NoSQL数据库入门图书,也是初学者了解NoSQL 技术全貌的图书。全书包括3部分,其中NoSQL基础部分包括初识NoSQL、TRDB与NoSQL的技术比较、NoSQL数据存储模式;NoSQL实践部分(电商大数据)分别介绍了文档数据库MongoDB和键值数据库Redis 入门及提高知识,并通过两个电商平台综合案例详细介绍了MongoDB和Redis在实现不同业务(如日志存储、商品评价、订单信息记录、点击量存储、商品推荐、购物车、记录浏览商品行为等)功能模块开发过程中的具体应用;NoSQL提高部分(电商大数据〉介绍了大数据环境下MongoDB和Redis 在操作速度和数据存储方面的优化方法
Apache Flink项目的资深贡献者Fabian Hueske和Vasiliki Kalavri展示了如何使用Flink DataStream API实现可伸缩的流式应用,以及怎样在业务环境中持续运行和维护这些应用。流处理的理想应用场景有很多,包括低延迟ETL、流式分析、实时仪表盘以及欺诈检测、异常检测和报警。你可以在任意类型的持续数据(包括用户交互、金融交易和物联网等数据)生成后,立即对它们进行处理。本书主要内容包括: 了解有关分布式状态化流处理的概念和挑战。 探索Flink的系统架构,包括事件时间处理模式和容错模型。 理解DataStream API的基础知识和构成要素,包括基于时间和有状态的算子。 以精确一次的一致性读写外部系统。 部署和配置Flink集群。 对持续运行的流式应用进行运维。
数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。而数据模型是构建应用系统的核心,是尽可能精准地表示业务运转的概念性框架。本书通过平实的语言,对数据模型及建模过程进行了深入浅出的介绍。全书内容分为5个部分,对数据建模简介、数据模型要素,概念、逻辑和物理数据模型、数据模型质量以及数据建模的进阶内容等方面进行讲解,全面细致地为读者解答与数据建模相关的知识点和疑问。除此之外,本书的zui后还对各类专业术语进行了细致的解释,方便读者参考。本书是一本经典的数据建模指南,非常适合对数据建模感兴趣的读者以及从事数据科学等相关工作的专业人士参考阅读。
本书主要介绍基于GraphPad Prism 9 的学术图表绘制方法。本书以软件所定义的8 种数据表为纲,按照 数据录入 数据分析 图表生成与美化 的顺序,结合科研实例,使用t 检验、方差分析、生存分析和主成分分析等相关统计分析方法,介绍了散点图、气泡图、柱状图、线图、饼图、面积图等常见学术图表的绘制和美化方法。同时本书提炼了学术图表绘制的一般流程、配色方法及GraphPad Prism 绘图的进阶技巧,兼顾学术图表绘制的实用性和美观性,适用于需要绘制学术图表的高校学生和科研人员。
本书主要讲解了应对数据分析师面试所需的基础知识与典型面试题的解答方法,内容以读者的阅读需求进行架构,力求使该者对面试题涉及的原理与解题思路有清晰的认知,以帮助读者在面试时举一反三,从容作答。 本书共分为7章。第1章介绍了正确认识数据分析的一些必要知识,以及用人单位对数据分析师的要求,第2~5 章,分别介绍了概率论与数理统计基础、分析工具的使用、面试时常见的数据思维、数据挖掘等 4个部分的知识,其中分析工具包括 Python、Pandas、SQL 和Excel,第6章讲解了知名公司近年来典型面试题的解题思路:第7章讲解面试中除了答题之外的其他方面的知识,并基于真实的面试流程,从面试技巧角度给出了建议。 本书适合想从事数据分析及相关岗位工作的读者阅读。
Oracle数据库管理从入门到精通》是一本 覆盖 OCP 认证内容、带有视频讲解、浅显易懂、幽默风趣、实例丰富、可操作性 很强的Oracle DBA(Oracle数据管理员)入门用书,适用于 Oracle 12c 、 Oracle 11g、 Oracle 10g、 Oracle 9i等多个版本。 《Oracle数据库管理从入门到精通》全书分为25章,内容有:Oracle的安装及相关配置,Oracle的体系结构,数据库管理工具,Oracle实例的管理,数据字典和控制文件,重做日志文件,表空间和数据文件的管理,存储结构和它们之间的关系,管理还原数据,创建数据库,表管理与维护,索引的管理与维护,管理和维护数据完整性,用户及系统资源和安全的管理,管理权限,管理角色,非归档模式下的冷备份和恢复,数据库的归档模式,数据库的联机备份及备份的自动化,归档模式下的数据库恢复,数据的移动,闪回技术、备份恢复与优化,设计
本书介绍Kafka的技术原理和应用技巧。内容包括如何安装和配置Kafka、如何使用Kafka API、Kafka的设计原则和可靠性保证,以及Kafka的一些架构细节,如复制协议、控制器和存储层。本书列举了一些非常流行的Kafka应用场景,比如基于事件驱动的微服务系统的消息总线、流式处理应用程序和大规模数据管道。通过学习本书,你不仅能够深入理解这项大数据核心技术,还能够将所学知识付诸实践,在生产环境中更好地运行Kafka,并基于它构建稳健的高性能应用程序。