《Python统计分析基础及实践》以Pytho3为基础,详细介绍了Python在统计分析中的基础知识和实践应用,全书大致 由数据整理、概率和统计推断三部分组成。其中在章对统计分析对象——数据的基本用语和数据的分类进行了介绍。 第2~3章介绍了汇总平均值和数据方差的计算方法,进而介绍了数据可视化的方法。第4~9章介绍概率相关知识,概率是 统计分析中不可缺少的数学知识。0~12章介绍主要的统计分析方法,如参数估计、假设检验、回归分析等。其中每章 都用一个例子贯穿始终,提出问题并用Python编程实现,以点带面,可帮助读者快速理解知识点,并通过编程让读者对统 计分析建立直观的理解。 《Python统计分析基础及实践》知识点全面,内容安排由浅入深、循序渐进,特别适合大中专院校金融、财务、统计、 计算机、人工智能、机器学习相关专业学生学习,也适
《跟老齐学Python》系列后续。读者在本书中可以学习到Numpy、Pandas、matplotlib、SciPy、SymPy等与数据分析相关的库,掌握其所定义的数据对象以及常用的属性和方法等,并通过各种类型的应用举例将所学基本知识给予综合应用。
本书介绍了Go语言的实践应用技术,主要以实际应用为目的,使读者在掌握基本的Go语言知识的基础上进行更多的实践训练。本书涵盖了Go语言基本概念、Go应用程序的管理机制、创建用户界面、云基础设施、微服务器及服务到服务的通信模式等内容,并按照问题、解决方案和讨论的顺序结合具体的程序示例对70种Go语言的技术逐步进行了介绍。本书可以作为程序员解决实际问题的参考。也可以作为Go语言爱好者学习和应用的参考书。还可以作为非专业学生Go语言学习的入门参考书,也可以作为专业学生的实践参考书。
本书介绍了Go语言的实践应用技术,主要以实际应用为目的,使读者在掌握基本的Go语言知识的基础上进行更多的实践训练。本书涵盖了Go语言基本概念、Go应用程序的管理机制、创建用户界面、云基础设施、微服务器及服务到服务的通信模式等内容,并按照问题、解决方案和讨论的顺序结合具体的程序示例对70种Go语言的技术逐步进行了介绍。本书可以作为程序员解决实际问题的参考。也可以作为Go语言爱好者学习和应用的参考书。还可以作为非专业学生Go语言学习的入门参考书,也可以作为专业学生的实践参考书。
编程的核心是算法,学习算法不仅能教会你解决问题的方法,而且还能为你今后的发展提供一种可能。《你也能看得懂的Python算法书》面向算法初学者,首先介绍当下流程的编程语言Python,详细讲解Python语言中的变量和循序、分支、循环结构,以及列表和函数的使用,为之后学习算法打好基础。然后以通俗易懂的语言讲解双指针、哈希、深度、广度、回溯、贪心、动态规划和很短路径等经典算法。《你也能看得懂的Python算法书》适合有编程基础的算法爱好者阅读。
PowerBuilder 9.0是Sybase公司推出的具有可视化界面的客户/服务器模式及分布式数据库应用程序的前端开发工具。利用PowerBuilder,可以迅速开发出面向对象的数据应用程序。PowerBuilder 9.0是该产品的版本,它在旧版 的基础上增加了以下功能:提供了XML DataWindow;提供新的组件让使用者可以轻松使用Web Services;可以在PowerBuilder开发环境中直接开发和部署JSP程序等。
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度搜索、哈希函数、迪菲-赫尔曼密钥交换、k-means算法等。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,便于学习和记忆。将本书作为算法入门的步,是很好不错的选择。
App Inventor的出现大大降低了编程门槛,没有程序设计经验的编程爱好者可以在短时间内就创建出炫目的安卓手机应用。本书带领读者通过动手实践数个编程实例来了解程序开发的逻辑。书中内容共分为21章,包含15个完整的应用,覆盖了游戏、教学、工具、信息管理以及网络应用等。本书不仅详细介绍了应用开发的步骤和要点,还针对每种应用的特征给出了进一步优化的建议,忠实还原了应用开发过程中遇到的问题和解决方法,是一本不可多得的编程技术与理念并重的实践指南。
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
本书结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。 全书共20章,大致分为4个部分。部分介绍了Python的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机、聚类算法等;第3部分介绍了深度学习中的常用算法,包括神经网络、卷积神经网络、递归神经网络;第4部分是项目实战,基于真实数据集,将算法模型应用到实际业务中。 本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。