《算法竞赛入门经典》: 《算法竞赛入门经典》是一本算法竞赛的入门与提高教材,把C/C 语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧。全书内容分为12章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、CH与STL入门、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法、高级专题等内容,覆盖了算法竞赛入门和提高所需的主要知识点,并含有大量例题和习题。书中的代码规范、简洁、易懂,不仅能帮助读者理解算法原理,还能教会读者很多实用的编程技巧;书中包含的各种开发、测试和调试技巧也是传统的语言、算法类书籍中难以见到的。 《算法竞赛入门经典》可作为全国青少年信息学奥林匹克联赛(NOIP)复赛教材、全国青少年信息学奥林匹克竞赛(NOI
自动驾驶汽车、自然语言识别、内容推荐引擎的实现都离不开人工智能和机器学习算法。机器学习算法只有在解决具体问题时才能体现价值。本书以解决各种趣味问题为目标,教读者用Python、JavaScript、C 编写机器学习算法,内容深入浅出,兼具实用性与大局观。读者将学习编写遗传算法、启发式算法、爬山算法、模拟退火算法,运用蒙特 卡洛模拟、点格自动机、适应函数解决问题。本书尤其适合对人工智能和机器学习感兴趣的程序员进阶学习。
本书将数学理论与实例相结合,这些实例以*先进的通用机器学习框架为基础,由Python实现,向读者介绍更复杂的算法。全书共25章,包括机器学习模型基础、损失函数和正则化、半监督学习导论、高级半监督分类、基于图的半监督学习、聚类和无监督学习模型、高级聚类和无监督学习模型、面向营销的聚类和无监督学习模型、广义线性模型和回归、时序分析导论、贝叶斯网络和隐马尔可夫模型、*大期望算法、成分分析和降维、赫布学习、集成学习基础、高级提升算法、神经网络建模、神经网络优化、深度卷积网络、循环神经网络、自编码器、生成对抗网络导论、深度置信网络、强化学习导论和高级策略估计算法。
内容简介
内容简介
内容简介
本书翻译自Sam R.Alapati的Expert Hadoop Administration。Sam R.Alapati是Sabre公司的首席Hadoop管理员,具有多年的Hadoop运维管理经验。他希望通过本书,为Hadoop集群开发与管理人员提供一些有益指导。从事Hadoop的管理工作,首先要了解Hadoop的架构,只进行单纯的操作并不能被称为合格的管理员。基于此,本书在介绍Hadoop及其生态组件时,都会首先介绍其架构,以期读者能够在更高的层次认识管理工作。本书首先介绍了Hadoop的整体架构及其部署与使用;然后着重介绍了两个重要的计算引擎MapReduce与Spark;接着介绍了Hadoop的数据存储与安全、数据均衡等特性;很后则介绍了如何进行参数调优与故障排除。整个流程下来,读者能够建立起完整的关于Hadoop管理的体系架构。
本书从群智能优化算法和高维多目标优化两方面入手,一方面系统地介绍了差分进化算法的基本原理及外研究现状,通过分析算法的模型、关键步骤及参数设置,设计和构建了高性能的改进算法,并将其应用于医学图像处理、电子商务等实际工程领域;另一方面,深入分析了高维多目标优化算法的基本原理、外研究现状及关键技术难点,详细描述了基于差分进化算法的高维多目标优化算法设计、构建与实验分析,以及其在智能交通系统中的实际应用。本书取材新颖、内容翔实、覆盖面广,案例分析具有较强的可重复性和可执行性,不仅适合于初学者,也适合自动化、计算机、信息科学等相关专业的高年级本科生和研究生、进化计算及高维多目标优化研究爱好者以及工程优化人员等。