智能计算作为人工智能时代的核心生产力,已成为国际计算机科技发展的焦点,在计算理论、体系架构、应用模式等方面迎来颠覆性变革。《中国电子信息工程科技发展研究.智能计算专题》从全球发展态势、我国发展现状、未来展望和热点亮点四个方面介绍智能计算取得的重要进展情况,对智能计算核心器件、关键软件、计算设备、计算架构等全球及我国态势、关键技术产业进展进行深入研究,希望为我国智能计算领域的发展提供参考。
文本简化是人工智能尤其是自然语言处理方向的一个重要研究领域。《自动文本简化》作为该领域的专业书籍,内容上尽可能覆盖文本简化领域各种主流的研究方法和相关资源。《自动文本简化》共9章,包括三个主要部分:~4章主要介绍文本简化的研究概况、背景知识、文本可读性评估和词语简化方法;第5~7章详细讨论句子分割、统计文本简化和神经文本简化方法;第8、9章着重介绍深度学习在文本简化研究和应用中的新进展以及汉语文本简化的研究。
《中国电子信息工程科技发展研究 深度学习专题》主要介绍了全球深度学习技术和产业发展现状及趋势,以及人才情况;阐述了我国的深度学习发展现状,包括基础理论、底层技术、应用技术和产业应用情况;重点介绍了我国深度学习相关的热点和亮点,包括AI芯片、深度学习框架、自动化深度学习建模、深度学习模型和行业应用等。同时对深度学习行业的发展和现状做了系统的总结,并阐述了下一步的趋势和影响。
《Pytho自然语言处理入门》是一本使用 Pytho解释在人工智能领域备受关注的自然语言分析方法的入门书,内容涵盖“检索技术”“实体提取”“关系提取”“语素分析”和“评估 / 情感 / 概念分析”等自然语言处理中的常用知识,同时对传统技术和引入了 AI 新技术的特点作了对比。全书以一线 AI工程师的实际项目经验为后盾,对自然语言处理的要点进行了归纳总结,并介绍了使用 Pytho程序、API、商业服务(IBM Watson)和 OSS(MeCab / Elasticsearch / Word2Vec)等进行自然语言处理的实用方法,在最后一章中,还介绍了 BERT 的相关内容,特别适合想学习自然语言处理的理工科学生和人工智能工程师进行参考和学习。
目前自动驾驶的一个发展趋势就是智能化。随着人工智能的飞速发展以及各种新型传感器的涌现,汽车智能化形成趋势,辅助驾驶功能的渗透率越来越高。这些功能的实现需要借助于摄像头、雷达、激光雷达等新增的传感器数据,其中视频处理需要大量并行计算。然而,传统CPU算力不足,而DSP擅长图像处理,对于深度学习却缺乏足够的性能。尽管GPU擅长训练,但它过于耗电,影响汽车的性能。因此,本书着眼于未来,认为定制化的ASIC必将成为主流。本书以自动驾驶的芯片设计为最终目标,来论述设计一个面向未来的自动驾驶SoC芯片的学术支撑和工程实践。 本书共13章。其中章主要介绍自动驾驶目前遇到的挑战和研究方向。第2~6章重点讲述环境感知以及规划控制方面的算法设计;第7~10章重点讲述深度学习模型的优化和深度学习芯片的设计;1章和2章重点讲述具有
本书针对学习者在选择合适的学习资源时所面临的学习资源问题,利用深度学习技术分别对学习者模型、学习者的反馈信息、学习者的社交关系和学习资源的知识图谱等方面的内容进行建模研究。本书采用定量与定性的研究方式评估了所提出的学习资源适配模型,并实现和开发了学习资源适配服务平台,从理论和实证研究相结合的角度对学习资源适配技术进行了系统性的研究。本书图文并茂,既有详细的模型算法图,又有严谨的公式推导和实验验证,所构建的模型能够有效的提高学习资源适配的准确率,使学习者在进行在线学习过程中,获得更加个性化的学习体验,以此提高学习者的学习体验和学习效率,具有的理论研究价值和较高应用可行性。