。
无
关于未来20年的预言,一幅走向奇点的未来生存指南与路线图。 继《奇点临近》之后,雷·库兹韦尔的又一部里程碑式作品!探讨以人工智能、生物技术及纳米机器人为代表的指数型技术将如何推动人类走向奇点!库兹韦尔通过扎实的论证,在书中重申了他对未来20年的大胆预言——AI将在何时通过图灵测试;人类将在何时迈入奇点;持续发展的人机融合技术将如何使人类智能增强数百万倍;人类寿命如何实现延长, 目前120岁的生物学限制;可再生能源技术的不断完善将如何满足我们所有的能源需求;指数型技术将如何改变人类生活的方方面面等。我们即将迈入认知、生活乃至生命被重构的时代,一切都将重新开始!生物技术、纳米技术、人工智能技术将如何重塑未来,一场关涉未来商业、生活、工作、健康等领域的超ji预言。 不断融合的指数增长的技术趋势
如今,人工智能的迅速发展给人们的日常生活和工作带来了巨大的影响。要想让人工智能朝着人类智能的方向持续迈进,我们就应该让我们创造的硅基大脑像人类大脑一样有感知、有记忆、有决策、有行动。问题的难点在于,人类大脑由约1000亿个神经元构成,神经元间交流复杂,大脑掌管认知、意识,影响我们生活的方方面面。我们如何破解如此庞大的复杂系统的运行机制呢? 在《心智的10大模型》中,计算神经科学家格蕾丝·林赛深入探讨了数学模型在理解大脑中的关键作用。书中通过10个数学模型,从单个神经元到复杂的神经环路,再到整个大脑的行为控制,逐步展示了数学工具如何帮助科学家理解和描述大脑的决策、感觉处理、记忆等过程。本书不仅是一部科学史,也是一本前沿的神经科学指南,为读者呈现了神经科学与数学、计算机科学的跨学科融合,启
。
图神经网络(GNN)是基于深度学习的图数据处理方法,因其的性能而受到广泛关注。本书全面介绍了GNN的基本概念、具体模型和实际应用。书中首先概述数学基础和神经网络以及图神经网络的基本概念,接着介绍不同种类的GNN,包括卷积图神经网络、循环图神经网络、图注意力网络、图残差网络,以及几个通用框架。此外,本书还介绍了GNN在结构化场景、非结构化场景和其他场景中的应用。读完本书,你将对GNN的成果和发展方向有较为透彻的认识。
大词典原始的编辑方针是:词汇的覆盖面力求广泛,尤其要顺应词典界的新潮流,纳入百科领域的专用词汇。编者们本着这个宗旨,在挑选词汇时“韩信将兵,多多益善”。对一部大型双语辞书而言,这种构想无疑是正确的,其产生的效果也是正面的。但任何看似的设计也免不了瑕疵,因为词典体积偏大,成本偏高,携带也有诸多不便。
DeepSeek三本套装,让你从新手到高手! 《高效使用DeepSeek》DeepSeek保姆级教程!它能指导我们每个人零基础轻松掌握DeepSeek的高效使用方法,成为使用DeepSeek的高手,走在时代的前列。作者卢森煌有多年的创业经验,是AI应用领域的资深专家,是多家500强企业的AI实施顾问,为数百家企业提供了AI应用方面的培训和咨询,本书内容是基于这些经验的总结。本书得到了北青传媒总裁、阿里云副总裁、快手副总裁等多位专家高度评价。 《DeepSeek使用指南》进阶顾问级教程!本书聚焦于DeepSeek的使用方法和技巧,直击30多个高频工作场景,通过100余个开箱即用的提示词模板,助你实现职场的弯道超车。从3分钟速出会议纪要、1键生成爆款思维导图,到悬疑剧本创作、短视频分镜设计,再到法律文书润色、学术数据可视化。无论是PPT排版 效率革命 、海报文案 灵感爆发 ,还是商
你的游戏是否有角色不能任意走动?是否有角色走进障碍物?是否有非玩家角色不能按照团队运动?现在你就可以掌握高级人工智能(AI)技术以解决这些问题。不管你是编程新手或者是个仅仅想快速学习AI的熟练游戏编程人员,你都会发现本书对于理解并应用AI到你的游戏中是非常合适的入门书籍。本书正是为你提供游戏开发方面高级、有用的AI技术的。如果你曾试图使用AI延长你的游戏的生命周期,让你的游戏更加具有挑战性,更重要的是让它们更加有趣,这本书就是为你准备的。 David M.Bourg(畅销书《游戏开发中的物理学》的作者)和Glenn Seemann将用非常直观、易懂的语言给你介绍一些诸如有限状态机、模糊逻辑和神经网络之类的技术,全书使用源代码(用C和C 编写)说明这些技术。从基本的诸如追赶、躲避、基于模式的运动和聚集等游戏行为到玩家行为预测,这本书告诉
你的游戏是否有角色不能任意走动?是否有角色走进障碍物?是否有非玩家角色不能按照团队运动?现在你就可以掌握高级人工智能(AI)技术以解决这些问题。不管你是编程新手或者是个仅仅想快速学习AI的熟练游戏编程人员,你都会发现本书对于理解并应用AI到你的游戏中是非常合适的入门书籍。本书正是为你提供游戏开发方面高级、有用的AI技术的。如果你曾试图使用AI延长你的游戏的生命周期,让你的游戏更加具有挑战性,更重要的是让它们更加有趣,这本书就是为你准备的。 David M.Bourg(畅销书《游戏开发中的物理学》的作者)和Glenn Seemann将用非常直观、易懂的语言给你介绍一些诸如有限状态机、模糊逻辑和神经网络之类的技术,全书使用源代码(用C和C 编写)说明这些技术。从基本的诸如追赶、躲避、基于模式的运动和聚集等游戏行为到玩家行为预测,这本书告诉
如何估计机器人在空间中移动时的状态(如位置、方向)是机器人研究中一个重要的问题。大多数机器人、自动驾驶汽车都需要导航信息。导航的数据来自于相机、激光测距仪等各种传感器,而它们往往受噪声影响,这给状态估计带来了挑战。本书将介绍常用的传感器模型,以及如何在现买世界中利用传感器数据对旋转或其他状态变量进行估计。本书涵盖了经典的状态估计方法(如卡尔曼滤波)以及 为现代的方法(如批量估计、贝叶斯滤波、sigmapoint滤波和粒子滤波、剔除外点的鲁棒估计、连续时间的轨迹估计和高斯过程回归)。这些方法在诸如点云对齐、位姿图松弛、光束平差法以及同时定位与地图构建等重要应用中得以验证。对机器人领域的学生和相关从业者来说,本书将是一份宝贵的资料。
如何估计机器人在空间中移动时的状态(如位置、方向)是机器人研究中一个重要的问题。大多数机器人、自动驾驶汽车都需要导航信息。导航的数据来自于相机、激光测距仪等各种传感器,而它们往往受噪声影响,这给状态估计带来了挑战。本书将介绍常用的传感器模型,以及如何在现买世界中利用传感器数据对旋转或其他状态变量进行估计。本书涵盖了经典的状态估计方法(如卡尔曼滤波)以及 为现代的方法(如批量估计、贝叶斯滤波、sigmapoint滤波和粒子滤波、剔除外点的鲁棒估计、连续时间的轨迹估计和高斯过程回归)。这些方法在诸如点云对齐、位姿图松弛、光束平差法以及同时定位与地图构建等重要应用中得以验证。对机器人领域的学生和相关从业者来说,本书将是一份宝贵的资料。
人工智能作为一个崭新的交流对象正在逐渐进入人类的日常生活。伴随着人工智能的崛起,随之而来的是对传播模型的革新。人工智能的独特性所带来的对人际交流默认假设的冲击很有可能会引发对交流观点的颠覆。人—人工智能交流对时间维度的改变,对交流对象可控性的放大,以及对信息的无意识无批判等,这些都会如同大坝上打开的细微小孔,最终引来整个大坝的决堤,进而如河流改道一样,将人类的交流引上不同的道路。几千年来,人类传播的历史一直在提供语言失败的证据;通过语言,我们很难实现思想的无障碍交流。在这次人工智能革命中,我们能否跨越语言的局限,直达交流的#目标——有效的思想交换?本书将对这一问题展开全面深入的讨论。 本书首先从媒体技术发展的角度探讨人工智能这个正在崛起的交流对象所代表的趋势。继而第二章从使用
本书详细介绍了目前深度学习相关的常用网络模型(ANN、N、RNN),以及不同网络模型的算法原理和核心思想。本书利用大量的实例代码对网络模型进行了分析,这些案例能够加深读者对网络模型的认识。此外,本书还提供完整的进阶内容和对应案例,让读者全面深入地了解深度学习的知识和技巧,达到学以致用的目的。本书适用于大数据平台系统工程师、算法工程师、数据科学家,可作为对人工智能和深度学习感兴趣的计算机相关从业人员的学习用书,也可作为计算机等相关专业的师生用书和培训学校的教材。