《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
该书是匈牙利裔英国籍哲学家伊姆雷·拉卡托斯于20世纪60年代完成的一部探索数学史上新发现的产生过程的力作,主要阐述作者用5年时间收集的两个典型的数学案例,以及本书编者添加的拉卡托斯1961年在大学所撰博士论文的部分片段。 拉卡托斯是用对话体的形式进行写作的,他虚构了教师在课堂上与学生们讨论正多面体欧拉公式 V-E F=2 的猜想与发现、证明和反驳的全过程,形象地展现了数学史上对此问题进行研究探索的真实的历史图景,以此来挑战和批判以希尔伯特为代表的认为数学等同于形式公理的抽象、把数学哲学与数学史割裂开来的形式主义数学史观。这篇光辉论著旨在解决数学方法论的基本问题,以一种探索和发现的情境逻辑来代替形式主义和逻辑实证主义的抽象教条。正如拉卡托斯所说,非形式、准经验的数学的发展,并不只靠逐步增加的毋庸置
本书共分15章,内容包括数学建模概论,初等模型,微分方程模型,种群生态学模型,线性规划模型,非线性规划模型,层次分析模型,模型,动态规划模型,图论模型,最短路模型,网络流模型,数学建模竞赛案例选讲,MATLAB软件使用简介等。
《函数论与泛函分析初步》(第7版)是俄罗斯数学教材选译系列之一,本系列中所列入的教材,以莫斯科大学的教材为主,也包括俄罗斯其他一些大学的教材,《函数论与泛函分析初步》是世界数学家A.H.柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析Ⅲ》)的基础上编写的。
在他十四岁时,伊恩·斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的。他发现,在学校里没有学到的数学其实十分有趣——事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。除去可以了解各种有趣的数学知识和八卦,你还可以亲自参与到数学当中,亲自制作数学游戏,试着解决数学谜题。作为参考,本书最后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2010年版的译文进行了全面整理提升。斯图尔特
《数学与人文》的首卷本登载了对主编的访谈,他们对本丛书的宗旨做了很详细的阐述。 在首卷本的“数学科学”、“数学星空”、“数海钩沉”、“数学魅力”、“数学教育”等栏目中,讲述了中外数学史和众多名家的生动故事、趣闻轶事,介绍了数学教学和学术研究中的经验体会,让读者看到了数学的趣味性、严谨性和它的无处不在。 《数学与人文》的创版适逢新中国成立60周年大庆,所以在首卷本中设立了新中国60年数学发展的专题。其中刊登了丘成桐教授撰写的“中国高等教育”一文,他从一个数学大师的角度纵横古今地畅谈了他所理解的中国高等教育的发展、现况、问题和展望;回顾了改革开放以来的中国数学会,讲述了国际数学家大会在我国召开的曲折过程;还介绍了三个数学分支(代数,数论,调和分析)的发展。 我们期望本丛书能受到广大学生和