9787115616401 数学的雨伞下:理解世界的乐趣 89.80 9787115631893 唤醒心中的数学家:帮你爱上数学的生活手账 89.80 《数学的雨伞下:理解世界的乐趣》 在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学就像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的 理所应当 和 显而易见 将被摒弃,现实背后隐藏的真相将带来巨大的启发。这就是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。 《唤醒心中的数学家:帮你爱上数学的生活手账
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及值,作图,轨迹,平面闭折线,圆的推广十个专题.对平面几何中的 500 余颗璀璨夺目的珍珠进行了系统地,全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果, 本书中的1 500 余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及成果, 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设"竞赛数学""中学几何研究"等课程的教学参考书.
数学经常会让我们感到很困惑,数学教科书又枯燥无味,似乎只是众多的概念和定理证明的堆叠,而似乎没有尽头的题海更让我们对数学望而生畏。当遇到一个新的数学名词时,我们往往不知道为什么要引入这个概念,导致对其一知半解。 斯蒂芬 弗莱彻 休森所著的《数学桥》一书独辟蹊径,将数学知识以一种截然不同的方式展示给我们。它不是教科书,也不是普及读物,而是介于这两点之间的 普及性教科书 ;它以高中数学为起点,以一种轻松有趣的方式娓娓道来,向我们展示了大学数学中的核心内容和亮点。我们在欣赏那些令人惊叹的结果的同时,可以领略数学的自然之美和使用价值。 在《数学桥》一书中,每当引入一个新的数学概念,首先作者会介绍它的应用背景,让我们明白这个数学名词并不是数学家凭空捏造的,这样我们在学习一个数学理论时,也了解
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
本书汇集了历届国际数学奥林匹克竞赛试题及解答.该书广泛搜集了每道试题的多种解法,且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强.本书可归结出以下四个特点,即收集全、解法多、观点高、结论强. 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书为《张奠宙文集》第二卷,汇集了张奠宙先生写作(含合作)的百余篇文章和传记,分为三部分:第一部分是现代数学史,包括20世纪数学史、中国现代数学史、华人数理名家研究、中国数学教育史和数学家传记等;第二部分是数学文化与数学普及,包括数学文化、数学欣赏和数学普及三类文章;第三部分是杂论,包括中国科学史、学术媒介与学术单位、人物回忆等内容。把数学史、数学文化研究,同数学教育、数学普及工作结合起来,为数学教育而研究数学史、数学文化,正是张奠宙先生重要的数学史治学思想和数学教育思想。
《算术研究》是被誉为“数学王子”的德国大数学家高斯的部杰作,该书写于1797年,1801年正式出版.这是一部用拉丁文写成的巨著,是数论的经典及*权威性的著作.在随后的200年时间中被翻译成多国文字,如德文、英文、俄文等. 这部著作在数学中的重要地位不亚于《圣经》在基督教中的地位,只有欧几里得的《几何原本》堪与之相比.因为高斯有一句名言:“数学是科学的女皇,数论是数学的女皇.”这部著作共七篇. 篇讨论一般的数的同余.并首次引进了同余记号,这是现代数学中无处不在的等价和分类概念出现在代数中的早的意义重大的例子. 第二篇讨论一次同余方程.其中严格证明了算术基本定理. 第三篇讨论幂的同余式.此篇详细讨论了高次同余式. 第四篇“二次同余方程”意义非同寻常.因为其中给出了二次互反律的证明,有人统计到21
9787115631961 用数学的语言看宇宙:望月新一的IUT理论 69.80 9787115614421 用数学的语言看世界(增订版) 69.80 《用数学的语言看宇宙:望月新一的IUT理论》 本书是解读望月新一 跨视宇Teichm ller理论(IUT理论) 的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本 IUT理论 的解读手册。书中侧重解读 IUT理论 的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与经典数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解 IUT理论 的入门读本,也适合作为学生了解数学思考方法的参考读物。 《用数学的语言看世界(增订版)》 本书为著名理论物理学家大栗博司先生写给女儿的数学启蒙书,书中以用 数学语言 解读自然为线索,突破传统数学教育的顺序和教学方式,用历
《DK数学百科(全彩)》内容简介:几千年来,人类一直处于探索、发现数学真理的征途中。数学试图为伟大的思想找寻简洁的解释方法,数学致力于发现特征并总结特征。从上古时代的莱因德纸草书、芝诺运动悖论,中世纪的二项式定理、斐波那契数列,文艺复兴时期的梅森素数、帕斯卡三角形,启蒙运动时期的欧拉数、哥德巴赫猜想,19世纪的贝塞尔函数、黎曼猜想、拓扑学,到近现代的无限猴子定理、模糊逻辑、四色定理,本书介绍了数学领域的诸多伟大思想,并用通俗易懂的语言进行阐释。让我们一起翻开这本书,品味数学的优雅与美丽。
数学奥林匹克是较高层次的数学竞赛,在数学的发展中起着至关重要的作用。本书汇集了第1届至第20届中国东南地区数学奥林匹克竞赛试题及解答,内容翔实。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者参考阅读。
本书主要介绍了直线与平面的一些特有性质,以及立体几何中的一些基本结论与研究成果.全书共分为六章:章直线与平面,第二章多面角,第三章多面体与平行六面体,第四章四面体,第五章规则多面体,第六章曲面体. 本书适合高中师生、高等院校数学与应用数学专业师生,以及数学爱好者参考阅读.
本书给出了历届美国大学生数学竞赛试题及解答,从第46届开始增加了英文原题及解答等相关内容,使读者能够更深入地感受美国大学生数学竞赛.本书试题解答部分具有一题多解、解法多样的特点,并且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强. 本书可归结出以下四个特点,即收集全、解法多、观点高、结论强,能够使感兴趣的读者在读本书的过程中发散思维,更好的理解题目. 本书适合于数学竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者参考使用.
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
本书是一部大型的英文版的应用统计学专著,是社会与行为科学中的统计学系列中的一卷,中文书名或可译为《项目反应理论手册.第三卷,应用》. 本书借鉴了该领域国际知名专家的工作,并且给出了实际测试问题中的项目反应理论的应用.虽然项目反应理论基本上由于其在测试项目中的反应理论模型上的优势被熟知,但是在给日常测试问题提供创新性的解的方面也取得了相同的进展.本书就着重于介绍主要应用.
本书是一部大型的英文版的应用统计学著作,是社会与行为科学中的统计学系列中的一本,中文书名或可译为《项目反应理论手册.卷,模型》. 本书借鉴了该领域国际知名专家的工作,并且介绍了所有主要的项目反应模型.本书为《项目反应理论手册》三卷书中的卷,涵盖了近20年内在项目反应理论中许多模型的发展,描述了不同反应模式或反应过程的模型,对更深入的参数化的需要是由于反应数据的多级或层次结构,以及其他拓展内容和见解.
《非线性系统及其绝妙的数学结构(第2卷)》是一本成功的创造了一个优秀数学模型的英文专著,中文书名或可译为《非线性系统及其绝妙的数学结构:第2卷》。 《非线性系统及其绝妙的数学结构(第2卷)》的主编共有二位:诺伯特 欧拉(Norbert Euler)和玛丽亚 克拉拉 努奇(Maria Clara Nucci)。
在众多的博弈论教材中,由弗登博格(Drew Fudenberg)和梯若尔(Jean Tirole)撰写的这本《博弈论》(Game Theory)应该是 经典、 全面和 深刻的教材之一,这一点已经通过了市场考验,并且经久不衰。本书是有关博弈论方面的图书的经典之作。囊括了迄今为止除演化博弈之外的所有博弈论的理论和方法,代表了博弈论发展的 水平。它不仅涵盖了博弈论的方方面面,而且几乎对每一个论题都给出了严密的数学推导和证明。
《分析学教程.第4卷,傅里叶分析,常微分方程,变分法(英文)》是分析学课程著作的第四卷,在本卷中作者讨论了傅里叶分析、常微分方程和变分法的基础知识(一维情况下的),其中包括一些关于分析动力学的结果,即哈密顿力学。
本书共分五编,分别为编近世几何学初编,第二编几何作图题解法及其原理,第三编初等几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形. 本书适合大学生、中学生及平面几何爱好者.
本书是Cohomologie Galoisienne的英译本。原版(Springer LN5,1964)是基于我在1962~1963年间为法兰西学院讲一门课,在Michel Raynaud的帮助下写的讲义。在新的修订本中添加了许多内容,并且包含了对Verdier关于射有限群文本的一个缩写。*重要的增添是收录了R.Steinberg的论文 半单代数群的正则元 (Publ.Math.I.H.E.S.,1965).我对作者和法国高等科学研究所(I.H.E.S.)授权转载表示感谢。 其他的增添包括: .Golod Shafarevich不等式的一个证明(第1章,附录2) .我在1991~1992年间为法兰西学院讲授K(T)的Galois上同调的课程概述(第2章,附录3). .我在1990~1991年间为法兰西学院讲授半单群的Galois上同调及其与Abel上同调(特别是3维时)的关系的课程概述(第3章,附录5)
本书是一本几十年前出版的老书的译本,其内容是1962年至1991年间匈牙利举办的大学生数学竞赛的试题.每次竞赛大约有10道题,原书虽是几十年前出版的老书,但仍因其水平之高,内容之独特至今仍散发着光辉.与近年来美国、中国等国家举办的大学生数学竞赛相比,本书的一些内容明显超出了目前理工科大学数学系的教学内容,达到了研究生水平,有部分内容甚至达到了研究水平,特别是在测度论、拓扑和集合论方面.例如,S.9便研究了是否存在一个周期为2 的连续函数f(x),使得f(x)的Fourier(傅里叶)级数在x=0处发散,但是f (x)的Fourier级数在[0,2 ]上一致收敛的问题.本书的命题者都是像Erd s(厄多斯)这样在匈牙利国内乃至国际上都著名的数学专家,很多参赛者后来都成了国际上知名的专家,这也从侧面证明了这个竞赛的水平. 书中的试题分为代数(A)、组合学(C)、函数论(F)、
本书是一本不等式方面的专著。 本书中介绍的许多方法都是初等的,但使用的非常巧妙。这不禁使笔者想起杨学枝先生(前福州二十五中副校长)利用初等方法解决的一个在国际双微(微分方程,微分几何)会议中被提出的一个不等式证明方面的难题。
近代 数理逻辑学家王浩在数学、逻辑学、计算机科学领域有着超高天赋和开拓性成果,他一生痴迷于哲学研究,是对世界哲学作出过深刻贡献的华裔学者。本书是王浩的代表作,是其正面集中阐释自己哲学思想的作品。循着从柏拉图到哥德尔的“数学-哲学家”传统,王浩在书中 对实质事实主义一般立场进行了长篇阐发;广泛、深入地讨论了数学哲学的诸议题;探索了心灵与机器、数学与计算机、知识与生活等话题;还重点考察了逻辑和数学领域的一些基本概念。此次中译本 出版,由专业译者精心翻译,以助读者 好地理解王浩的数学哲学思想。