本书是利用作者A.б.瓦西里耶娃在20世纪60年代提出的“边界层函数法”,对奇异地依赖于小参数的常微分方程组、积分一微分方程组和时滞微分方程组等各种非线性系统定解问题进行近似求解和渐近分析的专著。其特点是系统地论述该方法的理论基础和运用该方法对各种问题的渐近解进行构造的过程,而且对定理、命题和结果都给出详细的推导和论证,是一本关于这类非线性微分方程组奇异摄动问题的基本理论著作。 本书适合于从事渐近方法的研究生、大学生、应用数学工作者以及需要处理各种非线性奇异摄动方程组数学模型的科技工作者,对于需要求解非线性方程组的物理、力学和工程技术人员也是一本有用的参考书。
本书特色:经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
数是如何出现的?早期那些五花八门、千奇百怪的计数文字,如何变成了通用的阿拉伯数字?是谁发明或发现了代数?运算的规则是怎样建立的? 几何是怎样出现的?几何与代数有着什么样的紧密关系? 本书带您回到远古、中古、近代,为您讲述几何与代数画卷中的一个个小故事,认识故事中的主角:他们出现在从远古到十八世纪的历史长卷里,有着各异的背景、身份和个性;他们生活在世界上不同种族集居的地区,生存的环境大多很恶劣——或战火弥漫,或饥病蔓延,或陷于阴谋处于动乱,数千年的历史进程,和平只是难得的瞬间……他们历尽磨难,但执着地思考、探索、追寻。他们中间,虽然有罕见的天才,但很多并非专业的数学家,更多的,甚至连名字也没有留下来。正是他们一砖一石、一代又一代的努力,为现代数学这座精美富丽的殿堂搭建起坚实的地基
Thistextbookgivesadetailedandcomprehensivepresentationoflinearalgebrabasedonanaxiomatictreatmentoflinearspaces.Forthisfourtheditionsomenewmaterialhasbeenaddedtothetext,forinstance,theintrinsictreatmentoftheclassicaladjointofalineartransformationinChapterIV,aswellasthediscussionofquaternionsandtheclassificationofassociativedivisionalgebrasinChapterVII.ChaptersXIIandXIIIhavebeensubstantiallyrewrittenforthesakeofclarity,butthecontentsremainbasicallythesameasbefore.Finally,anumberofproblemscoveringnewtopics-e.g.complexstructures,Caylaynumbersandsymplecticspaces-havebeenadded....
《图论及其应用/高等院校计算机》是根据作者多年从事图论教学的经验,综合外同类的优势,并结合学科发展状况编写而成。 《图论及其应用/高等院校计算机》较为系统地介绍了图论课程中的基本知识,注重理论与实践结合,突出算法思想,适合于工科教学需要。全书分6章,章介绍图论的主要预备知识,第2章介绍图的基本概念,第3章介绍树与最短路径,第4章介绍网络流与Petri网,第5章介绍独立集与匹配,第6章介绍平面图与着色。各章之后配有适当难度的习题,便于学生课后练习。 《图论及其应用/高等院校计算机》可以作为高等院校硕士研究生或高年级本科生的,也可以作为研究人员的参考用书。