本书的内容主要包括:密度泛函理论(Densityfunctionaltheory,DFT)的基本概念,以及如何使用DFT方法对工程实际问题进行建模模拟和计算。内容包括:何谓密度泛函理论(DFT)、对于简单固体的DFT计算、DFT计算中的基本要素、固体表面的DFT计算、DFT计算振动频率、使用过渡态理论计算化学过程的速率、基于从头算动力学的平衡相图、电子结构和磁性、从头算分子动力学、在"标准"计算之外的精度和方法。
Elias M.Stein、RamiShakarchi所著的《复分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。本书已被哈佛大学和加利福尼亚理工学院选为教材。
内容简介
The core chapters of this volume provide a complete course on metric, normed, and Hilbert spaces, and include many results and exercises seldom found in texts on analysis at this level. The author covers an unusually wide range of material in a clear and concise format including elementary real analysis, Lebesgue integration on R, and an introduction to functional analysis. This makes a versatile text also suited for courses on real analysis, metric spaces, abstract analysis, and modern analysis. The book begins with a comprehensive chapter providing a fast-paced course on real analysis, and is followed by an introduction to the Lebesgue integral. This provides a reference for later chapters as well as an introduction for students with only the typical sequence of undergraduate calculus courses as prerequisites. Other features include a chapter introducing functional analysis, the Hahn-Banach theorem and duality, separation theorems, the Baire Category Theorem, the Open Mapping Theorem and their consequences,
本书俄文原为俄罗斯师范学院数学系的教学参考书. 本书在内容安排上与传统的教材有很大的不同. 本书共分为九章,作者从复变函数论的基础讲起,由浅入深,并在后两章中分别讲述了奇点、复变函数论在代数和分析上的应用以及保角映像、复变函数论在物理问题中的应用等.
《函数论》章着重叙述了二重极限的交换问题.第二章至第九章为复变函数理论,内容包括:解析函数、围道积分、残数、零点理论、解析延拓、模定理、保角映射、具有有限收敛半径的幂级数、整函数、迪利克雷级数等.第十章至第十三章为单元实变函数论,它总结了近代分析学工作者所必须具备的数学工具,如测度论、勒贝格积分与微分理论等,第十三章讨论傅里叶级数理论。