赵春娜等编著的《分数阶系统分析与设计》阐述了分数阶系统的本质特征,介绍了分数阶系统近似、建模等分析方法。针对过程控制中应用最广泛的PID控制器进行分析,阐述了性能更好的分数阶:PID控制器及整定方法,并进行了温度控制等实例分析。分数阶PID控制器的设计及整定方法,将对过程工业控制有重要的理论意义和巨大的应用前景。在自然灾害和教育评估中应用分数阶模型来建立多因素问的复杂关系,充分体现分数阶系统的特点。本书在叙述上重点突出、条理清晰、语言精练流畅、通俗易懂,便于知识点的理解和进一步研究,具有较高的学术价值。
本书是斯坦福一项目(Stanford-Cambridge Program)之一。 对于许多应用,算法是最简单可行的,或者是最快的,或者两者兼得。本书由该领域两位专家写成,给出了算法设计和分析的基本概念,适用于接近研究生开始阶段的水平。 本书的部分介绍了概率论的基本工具,以及在算法应用中经常使用的概率分析。为了说明每个工具的作用,在具体设置给出了一些算法示例。本书的第二部分为算法的应用,共包括七章,每一章集中在算法应用的一个重要领域,如数据结构、几何算法、图算法、数论、计数、并行算法及在线算法等。对于每个领域中的算法,做了全面并且具有代表性的选择。 尽管本书基本按照教材写成,也可作为一本有价值的参考书供专业人员和研究者使用。
本书是在初等概率论、测度论和泛函分析初步的基础上展开的。全书共分部分:一、高等概率的基本概念与工具,诸如元(含特例变量)及其分布,元的特征泛函,各种收敛性(含依概率收敛、概率为1地收敛、LP收敛、完全收敛、淡收敛、局部弱收敛及弱收敛等);二、概率极限理论,包括大数定律,中心极限定理,重对数律,不变原理,无穷可分律的理论及其应用等;三、过程论,包括可数状态离散时间的马尔可夫链,可数状态连续时间的马尔可夫过程,环境中马尔可夫链,鞅论等。在每章的最后,附有习题与应用。 本书是研究生的教学用书,也可供概率论的理论研究工作者、概率论与数理统计的应用研究工作者参考。
本书是斯坦福一项目(Stanford-Cambridge Program)之一。 对于许多应用,算法是最简单可行的,或者是最快的,或者两者兼得。本书由该领域两位专家写成,给出了算法设计和分析的基本概念,适用于接近研究生开始阶段的水平。 本书的部分介绍了概率论的基本工具,以及在算法应用中经常使用的概率分析。为了说明每个工具的作用,在具体设置给出了一些算法示例。本书的第二部分为算法的应用,共包括七章,每一章集中在算法应用的一个重要领域,如数据结构、几何算法、图算法、数论、计数、并行算法及在线算法等。对于每个领域中的算法,做了全面并且具有代表性的选择。 尽管本书基本按照教材写成,也可作为一本有价值的参考书供专业人员和研究者使用。