本书是一本涉及代数学和编码理论的基础性读物。作者用两章篇幅,以尽量少的抽象数学概念和语言来阐述这些编码理论所需要的代数知识,然后介绍编码理论中的两类码,即第三章的伪序列和第四章的纠错码。第三章完整地介绍了移位寄存器序列,特别是线性移位寄存器序列的理论。第四章介绍了几类重要的纠错码。最后在第五章,介绍了编码理论中出现的几个代数问题。 第三版除校正修订本的排印错误,改进符号表示外,在内容上也做了重要的修改和增补,特别在第三章增加了序列线性复杂度的重要概念,并用这个概念简化了解线性移位寄存器综合问题的Berlekamp-Massey迭代算法的证明 本书可供工程类、信息类打算进入编码理论或密码理论的、研究生作为教学参考书,也可供数学类专业学生和从事编码和密码工作的研究人员参
由夏宁茂等编著的《概率论与数理统计》是培养学生利用思维模式看待和处理现象的一门重要数学基础课程。通过模拟、函数计算及程序调用,把Excel工具广泛使用于概念的引进和数值计算,帮助学生形象理解新概念,直达核心处理思想;现代概念的描述性融入,现代概率论中的基本概念,例如:“可测性”、“概率空间变换”、“条件数学期望”、“期望积分平均”等科普描述性的引进,可使学生缩短与近代概率论之间的距离;重视基本概念与方法,又强调处理的思想,通过借用MBA的案例分析方法,引导学生灵活运用所学知识,掌握处理的基本过程;概率统计前后呼应、相互融合,兼顾传统理论与时代精神。
戴建生编著的这本《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四元数、Clifford对偶四元数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。 在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论
《Copula理论及其在金融分析上的应用》对Copula理论和方法进行了系统的介绍,特别是针对中国金融市场的应用做了大量的实证工作,有利于加深读者对Copula理论、方法及其应用的理解。全书共分五章,章介绍Copula函数的定义、基本性质和相关理论,讨论基于Copula理论的一致性和相关性测度,探讨常用的几Copula函数的基本性质及其在金融分析中的应用。第2章详细讨论Copula理论在多变量时间序列模型(包括Copula-GARCH类模型和Copula-SV类模型)的构建、估计和检验等问题,研究中国股市的相关模式和相关结构。第3章和第4章讨论时变相关Copula模型和变结构Copula模型的建模方法和应用特点,研究中国股市动态相关性和变结构特点。第5章讨论Copula理论的仿真技术及其投资组合风险分析问题,包括多元正态Copula、t-Copula和多元阿基米德Copula函数的仿真技术以及相应的投资组合风实
除了火的使用之外,文字的发明应当是人类文明的开始,而这个发明是从图形的抽象开始的.如果说人类最初发明象形文字是为了与天神、与祖先交流的话,那么人类发明拼音文字则完全是为了与人的交流.早期的图形抽象,核心是把三维空间的物体用线条描绘在二维平面上. 图形成为数学研究对象的真正动力是土地测量等生产实践.金字塔是人类创造的奇迹,金字塔的建造体现了古代埃及人已经掌握了相当的几何学知识.几乎所有的古代文明都研究了直角三角形,并且在许多古代文明的历史文献中都明确地记载了与直角三角形的边长关系密切的三个数值:3,4,5. 古埃及人、古巴比伦人以及古代中国人在日常生活和生产实践中创造出了实用而丰富多彩的经验几何学.
《离散数学(第2版)》版于1993年出版,该版教材发行至今已经10多年,由于需要增加专业基础课程的强度,对版作了一系列的修改,增加了这《离散数学(第2版)》的广度和深度。《离散数学(第2版)》仍然分为集合论、代数结构、数理逻辑和图论四部分,但调整了全书的章节,并在集合论中增加了“形式语言”一章;在代数结构中增加了“群码”一章;在数理逻辑中增加了“递归函数”一章;重新编写了“图论”共12章;其余各章都作了必要的修改和错误校正。
与通常的公理集合论著作不同,《公理集合论导引》在引入形式系统之前首先直观而又严谨地阐述了类、集合、序数,基数以及势的概念,为没有受过逻辑训练的读者掌握集合论的基本概念提供了方便。第六章引进了集合论形式语言和ZF形式公理系统,对直观集合论中的概念和公理进行了形式化处理,并在此基础上建立了若干逻辑定理。以后各章介绍了公理集合论中的主要方法和结果,以及作者本人的研究成果。
《水土保持概论》是一本全国高等农业院校“十二五”规划教材,主要内容包括了水土保持基本原理、水土保持技术措施、水土保持规划、水土保持监测、水土保持研究方法和生产建设项目水土保持等。 《水土保持学概论(第二版)》既可作为普通高等农林院校环境生态类及其他专业本科生、研究生教材,也可作为从事农、林、牧、水利、水土保持及环境保护的科研学者、工程技术人员的参考书。
《应用数学译丛:卡尔曼滤波及其实时应用(第4版)》将理论和应用相结合,深入浅出地介绍了卡尔曼滤波的基本原理和相关的重要主题。从推导、理解卡尔曼滤波必须具备的数学知识人手,首先给出了卡尔曼滤波的直观理解和严格的正交投影证明;在此基础上,针对卡尔曼滤波在实际应用时遇到的不同问题,介绍了系统噪声和量测噪声相关时的卡尔曼滤波、有色噪声的处理方法、时不变系统的极限卡尔曼滤波、序贯算法和平方根算法、非线性系统的扩展卡尔曼滤波、高维系统的解耦卡尔曼滤波、不确定系统的区间卡尔曼滤波、信号多分辨分析的小波卡尔曼滤波等,并在最后一章简单列举了主体部分没有介绍到的卡尔曼滤波的一些其他重要主题;最后给出了每一章练习题的解答或提示。 《应用数学译丛:卡尔曼滤波及其实时应用(第4版)》可以作为通信、导
数学实验是利用数学软件借助于计算机来处理数学问题的一门学科。《Maple与数学实验》介绍了Maple软件在符号运算、数值计算以及绘图与编程方面的功能。全书共9章,介绍了Maple在初等数学、向量与矩阵、多项式、微积分、代数方程与不等式、微分方程求解中的应用,Maple程序设计,基于Maple的数学实验。 《Maple与数学实验》可作为高等院校数学专业本科阶段数学实验课程的教材,亦可供相关专业的研究生阅读、参考。
本书是关于解析与概率数论的著作,是不可或缺的参考书。本书要求的预备知识仅限于普通本科和硕士课程,并为学生和青年学者提供该学科系统,完整和自洽的介绍。同时在多个中心论题上为有经验的学者起工具书的作用。由于本书的指导思想偏重于方法而非结论,它的价值远远超出了数论的范围。各章还附有注记以及三百多道难度各异的习题,其中某些甚至达到了研究的高度。本书的前一版曾翻译成英文,如今英文版已经是经典作品。本书是在法文版第三版基础上翻译的,相对版作了更新,补充了大量内容。书中特别还加进了一些未发表的新成果、数论许多分支的新观点,以及新的参考文献。
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
本书作者是统计决策理论的主要贡献者,《统计决策理论中的渐进方法》以作者在芝加哥大学多年授课讲义为基础,以易于理解的方式,从逼近复合统计实验概念中推衍出渐进统计理论。书中数学推理严密而且有深度,高等问题有较为详细论述。目次:实验——决策空间;源于决策理论的结果:亏格;似然比和锥形测度;基本不等式;充分性和非充分性;控制、紧性和接近;极限定理;不变属性;无穷可分、高斯和泊松实验;渐进高斯实验:局部
变量和分布函数,测度论,数学期望,方差,各种收敛性,大数律, 中心极限定理,特征函数,游动, 马氏性和鞅理论.本书内容丰富,逻辑紧密,叙述严谨,不仅可以扩展读者的视野,而且还将为其后续的学习和研究打下坚实基础。此外,本书的习题较多, 都经过细心的遴选, 从易到难, 便于读者巩固练习。本版补充了有关测度和积分方面的内容,并增加了一些习题。 本书是一本享誉世界的经典概率论教材,令众多读者受益无穷,自出版以来,已被世界75%以上的大学的数万名学生使用。本书内容丰富,逻辑清晰,叙述严谨,不仅可以拓展读者的视野,而且还将为其后续的学习和研究打下坚实基础。此外,本书的习题较多, 都经过细心的遴选, 从易到难, 便于读者巩固练习。本版补充了有关测度和积分方面的内容,并增加了一些习题。
戴建生编著的这本《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四元数、Clifford对偶四元数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。 在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论
《有限元方法卷:基本原理(第5版)》为有限元方法系列专著的卷——基本原理,涵盖了有限元分析的一些基础领域,同时还涉足有限元分析的前沿内容。本卷共20章,内容广泛,既强调有限元的数学力学原理,又结合工程实际背景。该书的版完成于1967年,到现在已出版第5版,历时40余年,成为有限元领域的经典著作,已有几代从事计算力学的学者从该书中受益。本书可作为高年级本科生和研究生的课程学习参考书,也是从事有限元研究的科研人员和工程技术人员的重要学习文献。
Thiook is a continuatioof Volume I of the same title [Grund-lehreder mathematischeWissenschaften, Band 115]. We constantly cite definitions and results from Volume l.1 The textbook Real and abstract analysiy E. HEWITT and K. R. STROMBERG [Berli. Gottinge. Heidelberg: Springer-Verlag 1965], which appeared betweethe publicatioof the two volumes of this work, contains many standaro facts from analysis. We use thiook as a convenient reference for such facts, and denote it ithe text by RAAA. Most readers will have only occasional need actually to read iRAAA.
变量和分布函数,测度论,数学期望,方差,各种收敛性,大数律, 中心极限定理,特征函数,游动, 马氏性和鞅理论.本书内容丰富,逻辑紧密,叙述严谨,不仅可以扩展读者的视野,而且还将为其后续的学习和研究打下坚实基础。此外,本书的习题较多, 都经过细心的遴选, 从易到难, 便于读者巩固练习。本版补充了有关测度和积分方面的内容,并增加了一些习题。 本书是一本享誉世界的经典概率论教材,令众多读者受益无穷,自出版以来,已被世界75%以上的大学的数万名学生使用。本书内容丰富,逻辑清晰,叙述严谨,不仅可以拓展读者的视野,而且还将为其后续的学习和研究打下坚实基础。此外,本书的习题较多, 都经过细心的遴选, 从易到难, 便于读者巩固练习。本版补充了有关测度和积分方面的内容,并增加了一些习题。