本书系统介绍当前国际上发展的一种数值分析方法——数值流行方法与非连续变形分析。非连续变形分析(DDA)是平行于有限元的一种方法,它与有限元不同之处是可计算不连续面的错位、滑动、开裂和旋转等大位移动的静力和动力问题。在DDA基础上新发展的数值流行方法(NMM)是应用现代数学——流行的覆盖技术,将连续体的有限元方法、非连续变形分析方法和解析法统一起来更高层次的计算方法。这一方法可广泛用于固、液、气、三态的连续和不连续问题。是当前最有发展前景的新一代采矿、本书理论先进,叙述系统,公式推导齐全,便于与编程应用,可作为土木水利、铁道交通、市油采矿、军事工程等部门有关专业,以及数学力学和计算机应用专业的工程师、研究生、软件开发人员的和应用参考。
蒙特卡洛方法是分析现实世界中工业问题的一种重要方法,它不必为了对问题进行简化而做出各种不现实的假设,而这些假设是确定性数学模型所不可避免的。本书介绍了一种研究系统动态行为的统一方法,其中蒙特卡洛方法是求解复杂现实问题的一种工具。这种综合性的方法把先前各种独立的技术、方法,比如产品的可靠性、维护需要、备件可用性等等成功地结合在一起。作者指出,使用这种方法能够提高效率。 本书的主要特点: 全面涵盖了系统工程和蒙特卡洛方法的基础理论和基本方法,使读者更容易理解涉及的知识和概念。 对方法的描述循序渐进,从简单统计过程的基本估计开始,经过多重积分的计算,再到复杂转移方程的求解,逐步深入。 对提出的
该书综述了有限元方法的基础,包括读者在解决各自存在的工程问题以及理解该知识点更先进的应用所必须了解详细的基础理论和工作室实例。为了让读者更清晰地了解有限元的研究进展,该版本在内容上作了明显的重排,将两个新章节放在前面:弱式;变分形式;多维场问题;网格自动生成;平板弯曲和壳理论;无网格技术的进展。
蒙特卡洛方法是分析现实世界中工业问题的一种重要方法,它不必为了对问题进行简化而做出各种不现实的假设,而这些假设是确定性数学模型所不可避免的。本书介绍了一种研究系统动态行为的统一方法,其中蒙特卡洛方法是求解复杂现实问题的一种工具。这种综合性的方法把先前各种独立的技术、方法,比如产品的可靠性、维护需要、备件可用性等等成功地结合在一起。作者指出,使用这种方法能够提高效率。 本书的主要特点: 全面涵盖了系统工程和蒙特卡洛方法的基础理论和基本方法,使读者更容易理解涉及的知识和概念。 对方法的描述循序渐进,从简单统计过程的基本估计开始,经过多重积分的计算,再到复杂转移方程的求解,逐步深入。 对提出的每一种技术给出了大量的工业实例加以说明。 对某些典型的例子提供了软件(可通过FTP取得),
科学家预言:“21世纪,人类将从经典信息时代跨越到量子信息时代。”创立了一个世纪的量子力学随着20世纪90年代与信息科学交叉融合诞生的量子信息学,已成为量子信息时代来临的重要标志。 本书是一部研究量子计算与量子优化算法的学术著作。在简要综述国内外该领域研究成果的基础上,主要篇幅介绍了作者近年来取得的创新性研究成果。全书共8章,主要内容包括:量子力学基础;量子计算基础;基本量子算法;Grover量子搜索算法的改进;量子遗传算法;混沌量子免疫算法,量子蚁群算法,量子粒子群算法;量子神经网络模型与算法;量子遗传算法在模糊神经控制器参数优化设计中的应用。 本书由浅入深、深入浅出、可读性好,具有系统性、交叉性、前沿性等特点。为便于学习,书中给出了多种量子优化算法在搜索、优化、聚类、识别与控制中的应
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中最重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、最短超字符串、背包、装箱问题、时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个最短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。 本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书
本书系统地介绍了计算几何中的基本概念、求解诸多问题的算法及复杂性分析,概括了求解几何问题所特有的许多思想方法、几何结构与数据结构。全书共分11章,包括: 预备知识,几何查找(检索),多边形,凸壳及其应用,Voronoi图、三角剖分及其应用,交与并及其应用,多边形的获取及相关问题,几何体的划分与等分,路径与回路,几何拓扑网络设计,图形学习、推理及判定等。本书可作为高等院校计算机、自动化等专业研究生或本科高年级学生的教材或教学参考书,也可供软件开发人员、相关专业科技工作者参考。