These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-institut f/ir Mathematik of the EidgenSssische Technische Hochschule, Ziirich from November, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. J/irgen Moser have encouraged me to write them up for inclusion in the series, published by Birkhauser, of notes of these courses at the ETH.
本书实例丰富,涉及多学科各种概率模型。主要内容有变量、条件概率及条件期望、离散及连续马尔科夫链、指数分布、泊松过程、布朗运动及平稳过程、更新理论及排队论等,最后介绍了模拟。本书写得极其生动和直观,并附有大量的不同领域的习题和实用的例子。本书可作为概率论与统计、计算机科学、保险学、物理学和社会科学、生命科学、管理科学与工程学专业过程基础课。
本书论述求解偏微分方程边值问题、初边值问题的边界元方法的数学理论及数值算法,系统地介绍了把几种常见的数学物理方程的边值或初边值问题转化为边界积分方程求解的各种途径,以及离散化求解边界积分方程的数值计算方法,包括配点法、Galerkdn方法、基于边界积分方程的无网络算法等,书中简要论述了的泛函分析及微分算子基础知识,着重论证了在带权的sobolev空间中利用与边界积分方程等价的变分形式来分析边界元近似解的收敛性和估计误差的方法。本书可作为计算数学、应用数学、计算力学等专业高年级本科生和研究生的教材,也可供大学教师、从事科学与工程计算研究的科学工作者和应用边界元方法的工程技术人员参考。
GeneralBackgroundIfirstbecameinvolvedintheteachingofgeometryabouttwentyyearsago,whenmydepartmentintroducedanoptionalsecondyearcourseonthegeometryofplanecurves,partlytoredresstheimbalanceintheteachingofthesubject。ItWasmildlyrevolutionary,sinceitwentbacktoanearliersctofpreceptswherethedifferentialandalgebraicgeometryofcuweswerepursuedsimultaneously,totheirmutua!advantage.
ThestudyoforthogonalpolynomialsofseveralvariablesgoesbackatleastasfarasHermite.Therehavebeenonlyafewbooksonthesubjectsince:AppellanddeFeriet[1926]andErdelyietal.[1953].Twenty-fiveyearshavegonebysinceKoornwinder'ssurveyarticle[1975].Anumberofindividualswhoneedtechniquesfromthistopichaveapproachedusandsuggested(evenasked)thatwewriteabookaccessibletoageneralmathematicalaudience.Itisourgoaltopresentthedevelopmentsofveryrecentresearchtoareadershiptrainedinclassicalanalysis.Weincludeappliedmathematiciansandphysicists,andevenchemistsandmathematicalbiologists,inthiscategory.
An appropriate coverage of the subjects contained in the five parts of thiook would need several monographs. We hope that the global treatment presented here may emphasize some of their deep interactions. As far as possible we present self-contained proofs; we have also tried to produce a book that could be used in a graduate course.
本书分11章探讨了数学与哲学上的许多问题。如,变与不变,数与量,相同与不同,事物变化的连续性等等,既阐述了数学与哲学这两大学科各自的特点,又从多方面论述了哲学研究与数学研究的密不可分性;以生动的实例说明了哲学家是如此重视数学,而数学又始终在影响着哲学。在研究了古代和当代的主要哲学家和数学诸流派的各种观点之后,作者讲述了自己的许多独到的见解。最后一章,“数学与哲学随想”,是作者多年来研究的心得与体会。书中的许多论述,格调清新,内涵深邃,还不乏幽默,值得广大数学工作者和社会工作者一读。