★张益唐、吴军力荐! 国民教师 李永乐数学科普作品! ★神奇提分、神奇爱上数学!让孩子更接近自己的名校梦! ★不一样的数学思维,让孩子鹤立鸡群 ★开拓数学眼界,训练数学思维,感受数学之美 ★开启青少年数学思维,开拓数学视野 ★不枯燥、不无聊,100 脑洞大开的问题,神奇的数学太好玩了! ★严谨的解读 有趣的生活案例,数学竟然如此有趣! 《神奇的数学》,6大数学门类,100 脑洞大开的问题:考清华和中500万元哪个更难?葫芦娃救爷爷,为啥一个一个上?一个西瓜切4刀,最多有几块?如何公平地切蛋糕?囚徒困境是怎么回事?香蕉皮和橘子皮,谁能展成平面? 数学从未如此好玩!
数学家都是怎样思考的?他们的工作到底是什么?他们如何在日常生活中发现种种与数学有关的猜想并加以证明?为什么一个尚未解开的数学猜想,会让近一个世纪的数学家为之痴迷?《大开眼界 数字的秘密生活:*有趣的50个数学故事》分为六个部分,除了介绍英雄般的数学家、描述著名的无解猜想和破解数字难题的精彩过程外,还穿插了《圣经》密码、俄罗斯方块、牛顿的世界末日预言等令人着迷的故事。这些情节丰富、充满娱乐性的小插曲,让我们看到数学跨越了生活的每一个层面,从法律到地理,从选举到植物学,带给我们愉悦和惊喜。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
《数学史(第三版)》由国际科学史研究院院士卡尔 B.博耶和哈佛大学数学与科学史博士尤塔 C.默茨巴赫所著,博耶和默茨巴赫按照时间、空间和学科演化三个维度,把数学几千年的发展浓缩为这本引人入胜的编年史。本书涵盖了数学发展的整个历程,可以对数学获得一个完整的认知。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但作者并没有忽视中国文明、印度文明和阿拉伯文明的贡献。毫无疑问,这本书是一部经典的关于数学及创造这门学科的 数学家们的单卷本历史著作。进入21世纪,数学高速发展,很多学科获得突破性的进展,本书的第三版同时做了更新,使得数学史更加完整。特别值得一提的是,本书视野开阔,并没有局限于西方视角,对于古代中国的数学发展也有较为详细的介
《欢乐数学》 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 通过所有这些有趣的例子,奥尔林老师关注的是让所有人认识到数学真正的核心:思维。他告诉孩子和所有人,学数学不是为了无聊地秀智商,而是可以学会用数学思维看待这个世界的运行,发现数学的魅力。 《欢乐数学之疯狂微积分》 微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成就一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成就。 在书中所描述的这些令人神往的人物中,艾萨克 牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲 热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米 诺特被阿尔伯特 爱因斯坦描述为数学史上重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟 拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍了其他
《从一到无穷大》是当今世界最有影响的科普经典名著之一,20世纪70年代末由科学出版社引进出版后,曾在国内引起很大反响,直接影响了众多的科普工作者。本书根据原书最新版进行了修订,书中以生动的语言介绍了20世纪以来科学中的一些重大进展。先漫谈一些基本的数学知识,然后用一些有趣的比喻,阐述了爱因斯胆的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因)和宏观世界(如太阳系、星系等)方面的成就。全书图文并茂,幽默生动,深入浅出,适合中等以上文化水平的广大读者阅读。
与历史上的数学天才一起挑战头脑体操! 315个经典游戏开发大脑潜能,呈现数学之美。 在《迷人的数学》中,世界著名智力游戏专家、百万级畅销书作者伊凡 莫斯科维奇,用他标志性的精彩图解,呈现了315个经典烧脑游戏,其中不仅有许多历史上著名的数学谜题,也有他自己设计的独特游戏。 作者也巧妙地将从史前时代到21世纪的数学史融入这些游戏题中,让你在挑战谜题、开启大脑潜能的同时,了解数学前进的轨迹,领略数学的迷人魅力。这是一本有观点、有故事的数学益智书,献给所有热爱美感、惊奇、挑战、数学与游戏的人。
无
莱昂哈德 欧拉的多面体公式 V-E F=2 被数学家们誉为第二优美的数学定理。从足球和宝石到美妙的穹顶建筑,这一公式描述了许多物体的结构。本书围绕欧拉多面体公式及其数学思想,从古希腊数学讲起,直到当代拓扑学的前沿研究,介绍了这一公式的发现及其对拓扑学研究的深远影响。书中包括丰富的插图与例子,展示了多面体公式的许多优雅而出人意料的应用,例如说明为什么地球上总有一些无风的地方,如何通过数树来测量林地的面积,以及为任何地图涂色需要多少支蜡笔,等等。在书中,读者将看到一群质疑、完善多面体公式和为这个非凡定理的发展做出贡献的杰出数学家,在数学史的长河中,他们都多面体的研究和拓扑学的发展做出了自己的贡献。 本书适合对数学,尤其是拓扑学及数学史感兴趣的读者阅读。
《九章算术》是人类科学史上应用数学的 算经之首 ,也是中国古代算法的扛鼎之作,更是一部与《几何原本》并列为世界两大数学体系的代表作。全书总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。 《九章算术》提出正负数的概念,特别是负数概念的提出,是人类关于数的认识的一次重大飞跃。在印度,直到7世纪才出现负数的概念;而欧洲比印度还晚1000年,直到17世纪才有人提出负数的概念。 《九章算术》提出 盈不足术 ,即用两次假设,可以把一般方程式化为盈不足问题,用 盈不足术 求解。而这一解法,直到13世纪才由阿拉伯人传至欧洲,被欧洲人称为 契丹算法 (即 中国算法 )。 《九章算术》系统叙述了分数的约分、通分和四则运算法则,提出了 线性方程组 的概念,并系统地总结了它
这是一本通俗的数学史读物,集结了数学史上那些令人尖叫的闪耀时刻,为读者展示每一个时刻给人类文明带来的后果和相互交织的影响。 如果说,数学是上帝给人们的说明书,那这本书就是对说明书的解读。 欧几里得以外的宇宙不是只有三维, 虚数的由来从一段背叛的历史中产生, 无理数的发现居然来自法老王的挑战, 自然数0中充满禅意的虚无解脱了人们对自然数的认识 数学的浪漫和璀璨,远远比你想象中要简单!
你可能还依稀记得在学校学过的数学:几何、代数、微积分,也可能你早就将这些知识抛在脑后。你可能精于计算,也可能罹患 数学恐惧症 ,千方百计地避免和数字打交道。无论你是哪种人,数千年来人类在数学上的非凡成就,都塑造和改变了你的世界和人生。 哥伦布发现新大陆得益于对三角形的理解,现代工业社会的诞生则始于对数字的掌握。数学为文艺复兴递上凿子,也促进了世界各地伟大建筑的诞生。数字是全人类的通用语言,语言不通的商人得以依靠数学建立互利贸易。数学也是燃料,助力人类实现从自由市场到登月的一系列抱负。 我们的生活方式、制度和基础设施均建立在数字之上。无论商业、住房、医药、政治、战争、农业,还是艺术、旅行、科技,几乎我们存在的每一个方面都以数学为基础被建立起来。人类的故事与数学密切交织,我们永远
本书主要涉及大一上学期要学的一元微积分,书中从高中阶段十分熟悉的数列出发,引出数列极限的概念,进而引出函数极限的定义,并由此引申出导数、微分、积分,其间穿插讲解无穷小量、无穷大量、函数凹凸性、极值与最值等内容,并简单介绍了各类中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)、洛必达法则、泰勒公式等常用定理和公式。全书语言幽默,文风轻快,用较短的篇幅将微积分入门的基础概念生动地展示出来。 这是为大一新生而写的数学书,主要有以下特点: 1.尽量由中学数学知识引出大学数学的内容; 2.不面面俱到,不追求绝对严谨; 3.通俗易懂, 保姆级 的讲解; 4.借用国学精粹引入数学概念; 5.适当讲述数学典故,激发学习兴趣; 6.穿插一些数学幽默小故事,缓解学习的紧张感; 7.让数学与生活挂钩; 8.玩梗,也
本书为日本数学家、菲尔兹奖得主广中平?v的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、亲子教育中培养创造性思维的原则与方法。本书是广中平?v先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
本书将两千多年的数学发展历程融为十二章内容,每章都包含了三个基本组成部分,即历史背景、人物传记以及在这些 数学杰作 中所表现出的创造性。作者精心挑选了一些杰出的数学家及其所创造的伟大定理,如欧几里得、阿基米德、牛顿和欧拉。而这一个个伟大的定理,不仅串起了历史的年轮,更是串起了数学这门学科所涵盖的各个深邃而不乏实用性的领域。当然,这不是一本典型的数学教材,而是一本大众读物,它让热爱数学的人体会到绝处逢生的喜悦,让讨厌数学的人从此爱上数学。
由数学大师和著名数学家亲自执笔撰写的这套数学小丛书是我国数学普及读物中的精品,曾激发一代青少年学习数学的兴趣。书中蕴涵的深刻而富有启发性的思想,促进了无数中学生在求学的道路上健康成长。
本书集结了丘成桐先生近半个世纪以来探讨数学和人文教育的系列文章,呈现了一位天才数学大师沟通数理与人文的努力与实践,透射出其追求真与美的数学观、人生观,一字一句皆饱含着对真理的热爱、对美的追求以及对祖国科学事业的殷殷之情。 丘成桐在书中分享了毕生研究数学、传授数学的经历和经验,讲述了世界范围内数学家群星闪耀的历史传奇,揭秘了 卡拉比-丘流形 的诞生历程和几何奥妙,也有大量篇幅谈及中国教育的现状和问题。 读者可在书中了解这位誉满世界的杰出数学大师的治学心迹与家国情怀,感受天才头脑的思维活力和深厚的人文底蕴,见证他追寻学问的理性以及对人才教育的计之深远。
《思考的乐趣:Matrix67数学笔记》内容大多是从作者6 年多以来积累的上千篇博客中节选而来的,分为 生活中的数学 、 数学之美 、 几何的大厦 、 精妙的证明 和 思维的尺度 五部分。书中基本不涉及高深的数学理论,但是内容新颖、时尚,既有与现实生活联系紧密的应用型话题,又有打通几何、代数联系的富有启发性的讨论,还间或介绍了一些数学难题的全新研究进展,信息十分丰富。 《思考的乐趣:Matrix67数学笔记》 是广大数学爱好者的美味佳肴,只要具备简单数学基础即能阅读。
《几何原本》是现代数学的基础,大约成书于公元前300年。被称为有史以来最为成功的教科书。 《几何原本》全书共13卷,1-6卷的主要讲平面几何,7-8卷主要阐述数论,10卷讲不可公度线段,11-13卷主要讨论立体几何。19世纪之前,如果说有一门学科的知识一直被当作 真理 的完美典范的话,那它就是欧几里得几何。它被普遍作为一种绝对精确、永远有效的推理结构。 后世的许多伟人都称自己受到《几何原本》的巨大影响。 牛顿的《自然哲学之数学原理》写作结构完全仿造《几何原本》。爱因斯坦曾言: 第一次看到《几何原本》这本书就惊为天人。 徐光启首次将《几何原本》翻译为中文时,盛赞 能精此书者,无一事不可精;好学此书者,无一事不可学。
微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题 爱、风险、时间,以及重要的事情 变化 。 书分为 瞬间 和 永恒 两部分,从夏洛克 福尔摩斯到马克 吐温,它将发掘微积分、艺术、文学和一只与猫王同名的柯基犬之间的联系。 你将看到奇怪的符号、疯狂跳跃的逻辑以及微积分的真正用途。无论是数学恐惧症患者还是数学发烧友,这都将是一本影响终生的书。
本书通过作者的生活经历、思考和爱好,以及对艺术的理解,从一个全新的角度谈音乐和数学的关系。主要内容包括:历史上的音乐数学,声学,乐理、乐器、曲风和数学的关系,以及数学和计算机音乐。本书较为全面、深入地展示数学和音乐关系那吸引人的神奇。该书涉及大量的数学音乐,其中也包括非常动听的AI谱曲。这本书视角之独特、内容之新颖,可使不少人文艺鉴赏的同时,改变对数学枯燥的偏见,必将起到积极的作用。本书适合有高中以上数学基础的音乐爱好者。
《纯数学教程》详细梳理了经典数学相关概念,其知识框架清晰而有条理,囊括了数论、代数、几何和拓扑学等多个领域。全书共分十章,每一章内容循序渐进、层层深入,从基础的核心概念讲起,提供严谨的证明过程,以及丰富的例子和习题。 第一章至第三章介绍了实数、复数等概念,其中,第二章着重通过图片展示的方式,直观地分析与讲解抽象的函数。第四章和第五章引入了极限、连续、振荡等概念。第六章至第八章详细介绍了微积分的概念和相关定理证明,如中值定理、达布定理等,此外,还论述了收敛的判别法。第九章和第十章,从多重角度出发,给出了指数函数、对数函数和三角函数的定义及其应用。
9787115514943 数学也可以这样学 自然 空间和时间里的数学 59.00 9787115524560 数学也可以这样学 大自然中的几何学 59.00 《数学也可以这样学 自然 空间和时间里的数学》 我们是如此需要数学,以至于从远古时代的古巴比伦人开始就已经积累了一定的数学知识。不过,那时的数学还只是观察和经验所得,没有烦琐且枯燥的证明。经过漫长的发展,数学逐渐成为学习和研究现代科学技术必不可少的基本工具,但同时它也成为让不少学生十分苦恼的一门课程。本书汲取原始的经验,从生活出发,通过有趣的画图练习和模型制作等,向读者展示自然、空间以及时间里的数学知识。 一沙一世界,一花一天堂。 飘落的雪花是几何,太阳、月亮的运转是周期,叶子的节点是数列 换个方式看数学,你将发现自然的美丽及宇宙的秩序。 《数学也可以这样学 大自然中的几何学》 从基