本书这本经久不衰的畅销书出自一位著名数学家G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
二十世纪六十年代,我国 数学家华罗庚教授为推进数学知识的应用,首率先开展优选学、统筹学、经济数学的理论研究,并组织小分队先后到二十三个省、市、自治区结合我国的实际情况推广优选法、统筹法“双法”工作,“双法”成功地应用于化工、电子、冶金、煤炭、石油、电力、机械制造、交通运输、粮油加工、建材、医药卫生、环境保护、农林牧畜、国防工业和科学研究等方面,不仅在当时就取得了丰硕成果,而且成为后来我国系统科学与控制论研究的开端。本书是华罗庚教授经过深入生产 线进行“双法”推广之后,写出的一本数学知识与广大一线生产实践相结合,深入浅出的“平话”。
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
你以为无解的方程组真的无解吗?维特根斯坦说: 数学是各式各样的证明技巧。 如何用数学重新求证我们的人生?小到电饭锅为什么不会糊底,筷子夹不起来豌豆怎么办;大到如何 好地与他人相处,如何选择自己的职业。这些看似与数学无关的问题其实都蕴含着深刻的数学思维。勤能补拙的大数定律、权衡利弊的稀疏概念、貌合神离的条件独立、精益求精的数值解法、体现中庸之道的 小二乘法 数学公式和算法背后的智慧帮助我们 好地看清这个世界,并在遇到问题时提供 科学的视角,帮助我们做出 好的决策。很多事情的 终结果是我们不能预见的,但是,这个结果发生的概率是我们可以靠努力提高的。《心中有数》教你像电脑的处理器一样,快速、深层地剖析事物的 利与弊 ,在接受不 的前提下,通过数学思维权衡多方的利益,找到 的解题点。人生其实就是一
《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。 《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于**后一章切入正题——哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为“现代逻辑科学在哲学方面的三大成果”的哥德尔不完备定理的大概证明。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。
《自然哲学的数学原理》是艾萨克·牛顿的科学才华处于 时期所写的旷世巨著,是他“个人智慧的伟大结晶”。 牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。 在本书之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 本书标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。本书不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
《几何原本(建立空间秩序 久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并 次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年 个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。 《数学女孩2:费马大定理》有许多巧思。每一章针对不同议题进行解说,再于末尾一章切入正题——费马大定理。作者巧妙地以每一章的概念作为拼图,拼出被称为“世纪谜题”的费马大定理的大概证明。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。
《广义相对论基础》是一本简明扼要的广义相对论入门教材,在内容选择上,突出物理图像、物理内容和物理思想,同时在数学上自给自足。注意把广义相对论基础与科研前沿衔接起来,希望能让初学者尽快进入科研的大门,然后再“干中学”,边研究,边学习,在实践中逐步提高。叙述上兼顾了科学性和可读性,作者尽可能阐释相对论的关键和难点,帮助读者克服学习中的困难,掌握相对论的精髓。书中还介绍了广义相对论研究的若干前沿问题,注意把广义相对论展示为一个开放的科学领域,让读者看到它发展的曲折经历,以及当前尚未解决的问题,特别是其中的基本问题。内中一些带有根本性的问题,也许会给读者带来愉快的、有益的思考。此外,书中还评述了相对论的建立和发展过程中的一些重要突破,增加了学习的趣味性,并使读者能从中体会科学研究的
《数学建模算法与应用(第2版)》作者根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用(第2版)》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏最小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。全书系统全面,各章节相对独立。《数学建模算法与应用(第2版)》所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,克服了很多读者看懂算法却解决不了实际问题的困难。
(第二版)张景中著北京《一线串通的初等数学》从小学生知道的三角形内角和的知识以及三角形面积公式出发,举一反三,推陈出新,直观而严谨地给出正弦的新定义。在此基础上,轻松得到正弦定理、和角公式、勾股定理等一系列三角公式和几何定理,揭示出几何、代数和三角的基本知识之间的密切联系,以三角为主线,构建了初等数学的新体系。《一线串通的初等数学》思想新颖,方法简明犀利,说理严谨,特别着力于从平凡处发掘创新的思路,引导读者发现问题深入思考。《一线串通的初等数学》分为5个部分:正弦和正弦定理;正弦和角公式;余弦和余弦定理;四边形;圆和正多边形。 大体上覆盖了初中应掌握的几何、代数和三角的基本知识。《一线串通的初等数学》每节都安排了例题和习题。
《常微分方程定性与稳定性方法》是为理工类专业的硕士研究生和高年级本科生的需要所编写的一《常微分方程定性与稳定性方法》.《常微分方程定性与稳定性方法》为第二版.主要包括定性理论、稳定性理论和分支理论三个部分.内容着眼于应用的需要取材精练,注意概念实质的揭示、定理思路的阐述、应用方法的介绍和实际例子的分析,并配合内容引入计算机软件.每章后附有习题供读者练习.
本书是关于一般拓扑的一部经典著作.书中系统地介绍了一般拓扑的基本知识.正文共分七章,包括拓扑空间、Moore-Smith收敛、乘积空间和商空间、嵌入和度量化、紧空间、一致空间、函数空间.此外,还有一章预备知识和一个附录.每章之后有大量问题,作为正文的补充和延伸,有助于读者更好地理解正文的内容.书末由译者加写了一个附录,介绍了早期不分明拓扑学发展的概貌. 本书正文七章由吴从忻翻译,其余由吴让泉翻译.增添的附录由吴从忻撰写. 本书可供高等院校数学系师生及有关的专业工作者参考.
《傅里叶分析导论》由在国际上享有盛誉普林斯大林顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重,为了便于非数专业的学生学习,全书内容简明、易懂.全书分为三部分,部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第二部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第三部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。目次:傅立叶积分的起源;傅立叶级数和基本性质;傅立叶级数的收敛性;傅立叶积分的应用;IR上的傅立叶变换;IRd上的傅立叶变换;有限傅里叶分析;Dirichlet定理。
本书是一本饶有趣味的数学读物,而不是普通的习题集。全书分为代数、平面几何、立体几何、解析几何和平面三角五章,书中充分应用各种数学知识,打破常规,别出心裁,巧辟捷径,使许多表面上看十分棘手的问题迅速迎刃而解。阅读此书,可以培养读者分析问题和解决问题的能力。《数学趣题巧解》适合中等以上文化程度的读者阅读,同时也是中学数学兴趣小组和数学墙报的有益的参考材料。
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程教材,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿大学、卡内基-梅隆大学、英国大学、德国汉堡大学、加拿大多伦多大学、荷兰 Vrije大学,印度理工学院在内的多个国家几十所高校采纳为教
本书从可计算一般均衡(CGE)模型的一般原理出发,对模型的构建,模型的参数估计,一般均衡模型的求解方法进行了介绍。开展政策模拟需要软件的支持,本书根据系统开发的基本流程,对系统开发的需求进行了分析,对于系统的构建进行了模块化分析,并对系统开发的数据库的设计框架进行了梳理分析。使用CGE开展政策模拟分析,离不开社会核算矩阵,本书对社会核算矩阵的一般原理、结构,社会核算矩阵调平的方法进行了介绍。使用CGE开展政策模拟,划分区域的尺度可以是全国的,可以是省区性的,也可以是多区域性的,本书对这几种模式下的社会核算矩阵的构建进行了分析,并给出了相应的实例。在本书的最后几章,我们对CGE计算的几个应用进行了模拟分析。 本书适合经济学、经济地理、数量经济学等专业高年级本科生和研究生使用,也适合政策模拟和数
华应龙的化错教育反映和体现了基础教育的规律与小学教育的特点,也包含了许多非常丰富的教育思想和教学方法。本书设计了非常典型的案例和鲜活的故事,以及华应龙自己的总结与深入思考。所以华应龙的课堂因差错而精彩,让学生充满自信,课堂交往中人与人和谐的人际关系,体现了师生之间的尊重理解和宽容,用自身的和谐发展创造和谐的教学,达到促使每个学生和谐发展的目的。 教学过程的本质就是培养思维。如果只给学生一个公式,让他埋头做题,那是发展不了思维的。“化错”,重在培养学生的思维。同时在化错的过程中,培养学生对数学的兴趣。看看华老师的案例,看到学生饶有兴趣的讨论,你就会感觉到数学“化错教育”的魅力。这样的数学课能让学生不感兴趣吗?没有兴趣就没有学习,有了兴趣就会刻苦学习。 本书没有讲什么教育理论