《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
本书以易于理解的方式讲述了时间序列模型及其应用,主要内容包括:趋势、平稳时间序列模型、非平稳时间序列模型、模型识别、参数估计、模型诊断、预测、季节模型、时间序列回归模型、异方差时间序列模型、谱分析入门、谱估计、门限模型.对所有的思想和方法,都用真实数据集和模拟数据集进行了说明. 本书可作为高等院校统计、经济、商科、工程及定量社会科学等专业学生的教材或教学参考书,同时也可供相关技术人员使用.Translation from the English language edition:Time Series Analysis with Applications in R ,Second Edition(ISBN 978 0 387 75958 6)by Jonathan D.Cryer and Kung Sik Chan. Copyright 2008 Springer Science+Business Media,LLC. Springer is a part of Springer Science+Business Media.
在人类所有的发明中,数学和诗歌无疑是*古老的。可以说自从有了人类的历史,就有了这两样东西。如果说牧羊人计算绵羊的只数产生了数学,那么诗歌则起源于祈求丰收的祷告。无论数学还是诗歌,它们的故事和触角遍及人类社会的每一个角落,以及历史和生命的每一个瞬时。 《数学的故事》共分三辑,共讲述了20个如诗歌一般优美的数学故事。甲辑是中外或者东西合璧的7个数学故事;乙辑是8个有关数学家的故事,涉及10多位专业或业余的数学家;丙辑的故事围绕5个有趣的数学问题展开,深入浅出且具有一定的挑战性。 为引发同学们、老师们甚至家长们的喜爱,作者在以下几个方面做了努力: 可读性:语言质朴自然,生动有趣,留有余味。 可视性:图文并茂,有些插图是作者亲自在故事发生地拍摄的。 想象力:每则故事都不只是某一位数学家的故事,而是
本书这本经久不衰的畅销书出自一位著名数学家G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
本书由131个 无需语言的证明 的图片组成,每一个都非常精彩。当从一个图片中悟出为何该图片证明了相应的数学结论时,读者便能够体会到数学绝妙的美,所以这本书叫做数学写真集。书中的素材选取自国际数学杂志中一流数学家发表的文章。
读完本书,你定会为你上学期间没机会读到这样的数学书而感到懊恼不已! 本书作者阿瑟 本杰明是享誉全球的 数学魔术师 ,他独创性地将许多人避之不及的数学与许多人津津乐道的魔术结合在一起,为众多数学恐惧症成人患者、正在学习数学的学生们开启了一个奇妙美丽的数学魔法世界。 本书堪称 12堂极简数学课 ,囊括了我们从小学到中学到大学必须掌握的12个*重要的数学概念,比如算术、代数学、几何学、三角学、微积分、圆周率、无穷大等。更重要的是,本杰明既是一名优秀的数学教授,更是一位高明的魔术师,他的魔术棒所指之处,会让我们茅塞顿开。他在书中为我们准备了神奇精彩的数学魔术、开脑洞的智力问题,让我们在这趟数学的魔法世界之旅中,从大自然中领略斐波那契数列之美,从小幽默中领会到无穷大的奥秘,从《达 芬奇密码》中窥见黄
《自然哲学的数学原理》是艾萨克·牛顿的科学才华处于巅峰时期所写的旷世巨著,是他“个人智慧的伟大结晶”。 牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。 在本书之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 本书标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。本书不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
《数学实验(MATLAB版 第4版)/普通高等教育 十二五 规划教材》是在贯彻落实* 高等教育面向21世纪教学内容和课程体系改革计划 的要求精神及-3版的基础上,按照工科及经济管理类 本科数学基础课程教学基本要求 ,并结合当前大多数本专科院校的学生基础、教学特点和教材改革精神进行编写的。全书以通俗易懂的语言,全面而系统地讲解数学实验的内容。全书共7章,章是绪论;第2 5章是基础实验部分,内容包括一元微积分实验、多元微积分实验、线性代数实验和概率论与数理统计实验;第6章是综合实验;第7章是数学建模初步。每章都以实验的形式将有关内容与MATLAB相结合,达到理论与实践的统一,便于读者学习和上机实验。每节后面有 练习题 ,每小节(或节)的例题(或实验)前有简要的 实验目的 ,并在附录中有MATLAB的基本操作。 《数学实验(MATLAB版
你以为无解的方程组真的无解吗?维特根斯坦说: 数学是各式各样的证明技巧。 如何用数学重新求证我们的人生?小到电饭锅为什么不会糊底,筷子夹不起来豌豆怎么办;大到如何 好地与他人相处,如何选择自己的职业。这些看似与数学无关的问题其实都蕴含着深刻的数学思维。勤能补拙的大数定律、权衡利弊的稀疏概念、貌合神离的条件独立、精益求精的数值解法、体现中庸之道的 小二乘法 数学公式和算法背后的智慧帮助我们 好地看清这个世界,并在遇到问题时提供 科学的视角,帮助我们做出 好的决策。很多事情的 终结果是我们不能预见的,但是,这个结果发生的概率是我们可以靠努力提高的。《心中有数》教你像电脑的处理器一样,快速、深层地剖析事物的 利与弊 ,在接受不 的前提下,通过数学思维权衡多方的利益,找到 的解题点。人生其实就是一
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。 《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于**后一章切入正题——哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为“现代逻辑科学在哲学方面的三大成果”的哥德尔不完备定理的大概证明。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。
这本书包含了从各种数学竞赛和期刊中甄选的问题,但人们不能忽视数学的经典结果,因为它们超过了有时间的竞赛水平经典并不意味着简单!这些数学之美不仅仅可以证明初等数学可以产生珍宝,它们被许多人视为“真正的数学”,是对超越竞赛的数学的一种邀请.在这种背景下,读者远比人们想象得更为多样化。即便如此读者很容易发现这本书的许多问题是有一定难度的因此理论部分较短,重点放在问题上当然还有更微妙的结果,比如二次互异性和原根的存在性,都与线性代数或数学分析的基本结果有关本书会提供对读者有帮助的证明过程我们假定读者熟悉初等数学的经典理论,我们会自由地使用它们本书通过权衡常规练习的需要来选择问题,这种练习让你熟悉解决难题的方法而找到真正美妙解法的乐趣。
数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。 《数学女孩2:费马大定理》有许多巧思。每一章针对不同议题进行解说,再于末尾一章切入正题——费马大定理。作者巧妙地以每一章的概念作为拼图,拼出被称为“世纪谜题”的费马大定理的大概证明。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
本书共分6章,分别介绍了代数、三角函数的极值问题,以及平面几何与解析几何中的极值问题并对复合函数的极值问题及离散量的优选值与最小值问题进行了阐述。
本书通过游戏与谜题的方式向读者介绍了概率论、统计学以及离散数学的一些内容,其中游戏涉及博彩游戏、纸牌游戏、魔术、汉诺塔、数独、体育竞赛等诸多方面。本书通过一个个生动有趣的游戏,让读者了解其中的数学原理。
本书分“解三次和四次多项式方程的故事”、“向五次方程进军”、“一些数学基础”、“扩域理论”、“尺规作图问题”、“两类重要的群与一类重要的扩域”、“伽罗瓦理论”及“伽罗瓦理论的应用”八个部分逐步展开,引导读者一步步去解决一系列重大的古典数学难题。
本书按照“高等数学课程的教学基本要求”,结合“全国硕士研究生入学考试的数学考试大纲”的要求编写而成.内容包括一元函数微积分、向量代数与空间解析几何、多元函数微积分、无穷级数、微分方程等.每章都按照高等数学的教学过程进行分节,每一节又都分为两部分:主要知识与方法、同步练习,另外还特意精选了期末考试、硕士研究生入学考试及全国大学生数学竞赛等试题。 本书可作为高等学校理工科有关专业学习高等数学课程的课后练习,也可作为考研及参加全国大学生数学竞赛的训练资料,并可供高等院校数学教师、自学考试人员及其他相关人员作参考。
本书是在《国务院关于大力发展职业教育的决定》精神的指导下,贯彻以服务为宗旨、以就业为导向、以学习者为中心,文化课要为提高学生入文素养服务、为学生专业学习提供支持的职业教育办学思想,结合当前职业院校的学生实际情况,在专家指导下,经过充分调研,由职业教育一线数学教师共同编写的。全套共两册,分《数学》(基础模块)、《数学》(专业模块)。 本书共13章。第1章为立体几何,第2章为复数,第3、4章为极限,第5~10章为微积分,第11、12章为线性代数,第13章为离散数学初步。 本书可与《数学》(基础模块)教材配套使用。可作为各类职业院校教材或参考书。
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。
本书根据作者多年来为各种不同程度的大学生和研究生讲课及讨论班上报告的内容整理而成。*章对极限理论的发展作了历史的回顾。以下六章分别讨论函数、微分学、积分学、傅里叶分析、实分析与点集拓扑学基础以及微分流形理论。每一章都强调有关理论的基本问题、基本理论和基本方法的历史的背景,其与物理科学的内在联系,其现代的发展与陈述方式特别是它与其他数学分支的关系。同时对一些数学和物理学中重要的而学生常常不了解的问题作了阐述。因此,它涉及了除微积分以外的许多数学分支:主要有实和复分析、微分方程、泛函分析、变分法和拓扑学的某些部分。同样对经典物理学 牛顿力学和电磁学作了较深入的讨论。其目的则是引导学生去重新审视和整理自己已学过的数学知识,并为学习新的数学知识 例如数学物理做准备。 本书适合于已学过微
本书是陈光曙主编的《大学数学(理工类)》(第2版)上、下册的配套教辅.全书共分10章,各章的名称和顺序都是按照《大学数学(理工类)》第2版的结构顺序编排的,以方便学生学习时对照参考,每一章分为三个部分:一、考试内容和要求,对考试内容和考试要求进行了简要归纳,便于复习时自我检查;二、典型例题选讲,精选了一些具有代表性的例题,其中有一些选自近几年的考研试题,引导学生分析解题思路,归纳解题技巧;三、课后习题解答,对课后的全部习题,包括A类和B类,给出了详细的解答。 《面向21世界普通高等教育规划教材及学习指导:大学数学学习指导与习题详解·配第2版》内容翔实,为学生学好大学数学提供了极大的便利,既可作为选用《大学数学(理工类)》(第2版)上、下册高校学生的配套教辅,也可作为非数学专业学生考