本书强调抽象的向量空间和线性映射, 内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等. 本书在内容编排和处理方法上与通行的做法大不相同, 它完全抛开行列式, 采用更直接、更简捷的方法阐述了向量空间和线性算子的基本理论. 书中对一些术语、结论、数学家、证明思想和启示等做了注释, 不仅增加了趣味性, 还加强了读者对一些概念和思想方法的理解.
本书系统地介绍了非线性化问题的有关理论与方法,主要包括一些传统理论与经典方法,如非线性化问题的性理论,无约束优化问题的线搜索方法、共轭梯度法、拟牛顿方法,约束优化问题的可行方法、罚函数方法和SQP方法等,同时也吸收了新近发展成熟并得到广泛应用的成果,如信赖域方法、投影方法等。