暂无内容简介。。。。。。
本书由担任2000~2003年国际物理奥赛国家集训队教练的6位复旦大学物理系教授集体编写,在培训与选拔国际物理奥赛国家集训队队员所用习题和选拔题的基础上整理修订而成。编写时又根据当前情况进行了适当的删节和补充。题目内容覆盖普通物理学的各个方面,题目深度富含多种层次,适合各种类型读者的需要。作者根据每个题目的具体情况,提出完整的解题思路,并作了详简适当的解答。某些题目在解答之后,还就该题的解题方法、题目背景、物理意义等作出点评,以拓宽读者的思路。 本书可供有志于参加国内和国际物理竞赛的学生参考,对培训和选拔各类物理竞赛队员的教师有所帮助,对于准备参加物理类研究生考试的读者同样具有参考价值。
国防教育是建设和巩固国防的基础,是增强民族凝聚力、提高全民素质的重要途径。普及和加强全民国防教育,对于凝聚全民族的意志和力量,建设巩固的国防和强大的军队,加快推进中国特色社会主义事业,实现中华民族伟大复兴的中国梦和党在新形势下的强军目标,具有重要而深远的意义。
竞赛的目的是促进中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;促进学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。 《全国初中物理竞赛试题分类解析》中含有专题探讨,试题模拟,帮助学生在竞赛中取得好成绩。
随着小学新课程改革的不断深入,学习理念和学习方法也随之发生变化,教师、学生以及家长对学习辅导书提出了新的要求。 很多学生从小就非常喜欢数学,并在数学方面得到了良好的教育,并有较好的发展前景。但也有一些学生投入了大量的精力,习题做了一大撂,但成绩仍不理想,甚至感到学习数学是一件很烦恼的事情,不喜欢数学。究其原因,就是没有找到学数学的窍门,没有掌握学数学的规律,没有发现适合自己的学习方法,自然也就感觉不到学数学的快乐。
在世界体育史上,奥林匹克运动起源于古希腊人关于灵活,力量与美的竞赛。它因古希腊的一个地名——“奥林匹克”而得名。 数学奥林匹克,指的就是数学竞赛活动。数学竞赛是一项传统的智力竞赛项目,它对于激发青少年学习数学的兴趣,拓展知识视野,培养教学思维能力,选拔数学人才,都有着重要的意义。数学竞赛活动始于114年前的匈牙利,除战争等原因中断了7年之外,这个竞赛每年10月都要兴行,沿袭至今。1934和1935年,苏联开始在列宁格勤和莫斯科举办中学数学竞赛,并冠以“数学奥林匹克”的名称。从此,这一名称就正式出现了。到1959年,罗马尼亚数学物理学会向东欧等7国发出邀请,在布加勤斯特举办“届
本丛书分《基础篇》、《提高篇》和《模拟篇》三册,其中《基础篇》主要根据蔼考和竞赛一试要求编写,《提高篇》根据二试要求编写,《模拟篇》收集了28份奥林匹克竞赛模拟试卷。 本丛书内容涵盖全国高中数学联赛命题要求的知识点,与高中教材内容同步,分章编写,每章设若干讲,每讲设“知识归纳”、“典型例题”、“方法导引与拓展”、“巩固练习”四个栏目。“典型例题”突出代表性和新颖性,解法简捷、分析到位,便于教师辅导和学生自学;“方法导引与拓展”起到画龙点睛的作用;“巩固练习”题量适中,紧扣高考要求,精心选编高考、自主招生和竞赛佳题、新题,凸现创新、综合和实践能力的培养。
本书力求体现以下特点:1.导向性。《全国高中化学竞赛真题及模拟试题汇编》收集了近十年全国高中化学竞赛真题,全面反映了近几年来全国高中化学竞赛初赛试题命题特点,从中可体会和摸索未来竞赛命题的规律和走向。 2.新颖性。《全国高中化学竞赛真题及模拟试题汇编》所命制的模拟试题均是从近几年省市化学竞赛试题中进行筛选、整合和改编而成,试题不仅内容新,题型新,而且具有广泛的代表性和典型性。 3.实用性。《全国高中化学竞赛真题及模拟试题汇编》前半部分是历年化学竞赛真题汇编,后半部分是模拟试题训练,可供学生在赛前进行检测和自我评估,不断巩固,不断提高,这样既便于学生使用,也便于指导教师参考。
覆盖1991~2002年国际数学奥赛竞赛题。精心分类,优化解题,立足前沿,打造竞赛工具书。
中国化学界的泰斗,原北京大学副校长傅鹰先生有句名言:实验是法庭。化学是一门以实验为基础的科学,化学中的概念、定律和理论源于实验,又为实验所检验和发展。作为中学生,参与到化学奥林匹克竞赛中来,也离不开化学实验。通过化学实验,学生不仅可以获得大量的直接的化学感性认识,而且可以培养深人细致的观察能力,以及对实验现象进行科学分析和归纳的能力,使感性认识上升到理性认识,这是一种重要的科学思维方法训练。通过化学实验,还可以培养独立工作的能力、严谨踏实的学风、实事求是的科学素养和勇于探索的创新精神。化学实验在全面提高学生素质、培养科学后继人才方面具有十分重要的作用。 现在各种奥赛书籍琳琅满目,但适合参加中学化学奥林匹克竞赛冬令营选手的书甚少。本书主要针对参加全国冬令营的选手需要掌握的实
人们永远希望更好、更快、更强,所以就出现了各种竞技活动。数学,作为锻炼思维的体操,一门可以充分展现头脑灵活度的学科,理所当然地被选择用来比试人们的思维、发现的能力和作为培育数学人才的工具,于是就出现了中学数学竞赛。
本丛书是为数学爱好者所编写,并按数学分类方法从初一至初三分为三册。每一册内容由浅入深,语言通俗易懂,对于比较难理解的内容,有专门的评注分析。其特点是每章节前均有知识点导读,对新的定理与知识都给予详细介绍,并有例题剖析,使读者能尽快了解新的知识点。书中的习题,从易到难,有利于培养学生学习数学的兴趣和自信心,书后附有解答提示和参考答案,所以本书也可以作为数学爱好者的自学用书。 本书丛书每册均分为三部分:一、同步提高篇;二、专题辅导篇;三、综合训练篇等本册供初中三年级选用。主要介绍:分式方程与无理方程、二次方程组的解法与应用,正(反)比例函数与一次函数、二次函数、相似三角形、锐角三角比与解直角三角形、圆、同余及其应用、计数原理与计数方法、在性原则、反证法和构造法等内容。最后还有
本书对数学奥林匹克的历史和发展,奥林匹克数学及其牲,奥林匹克数学与数学教育,奥林匹克数学的内容和方法,以及数学奥林匹克命题理论和数学奥林匹克解题理论等方面进行了系统研究和探讨,全书内容丰富,观点鲜明。 本书可供高等师范数学系师生、从事数学奥林匹克教学和研究的人员以逐鹿中原学数学教师和数学爱好者阅读。
数论,是一个重要的数学分支,肇源极古。 数学竞赛中常常出现初等数论问题。这类问题,利用极少的知识,生出无穷的变化,千姿百态,灵活多样。 本书通过数学竞赛问题介绍初等数论的一些基本概念和方法。希望读者阅读此书时,带着纸和笔,在看例题的解答之前,先试着刍己动手,这样才能真正体味出解题的窍门。