一个图形怎么才能有多于一个但又少于两个面? 一个高度精确的医药测试,有可能更容易得出错误的结论吗? 如果只能看到销售数据的*位数字,你怎么才能知道你的会计是不是在说谎? 在我们的生活中,数学无处不在,真实、有趣而美妙。当你开始用数学的眼光去观察世界,生活或许会变得更加简单而确定,你准备好了吗? 爱德华?沙伊纳曼, 沙伊纳曼定理 的命名人,知名的数学家和教育家,会在这本书中帮我们发现和解答身边有趣的数学问题,带领我们走进那个关于数字、图形和不确定性的美丽新世界。
个完整的科学的宇宙论和科学理论体系, 奠定科学素养 《自然哲学之数学原理》是人类掌握的个完整的科学的宇宙论和科学理论体系,其影响遍布了经典自然科学的所有领域。牛顿总结了近代天体力学和地面力学的成就,为经典力学规定了一套基本概念,提出了力学的三大定律和万有引力定律。全书分为四个部分,首先对书中的定义和运动定律做了说明,从物体的各种运动形式和在阻滞介质中摆体的运动,到宇宙星体的运动详细论述。这本书意味着经典力学的成熟,其中所建立的经典力学的理论体系成为近代科学的标准尺度。
本书是享誉世界的科普经典著作,不仅影响了众多科研和科普工作者,更是将很多 门外汉 领进了自然科学的大门。 全书用数学的发展和公式的演进作为线索,从数学的诞生讲到生命和宇宙的诞生,融入了物理学、生物学甚至哲学等科学发展的诸多领域,不仅为读者描绘一幅全面的宇宙图景,更是向读者传递了科学的思维方法、科学的认识角度、科学的世界观。
这是一本通俗的数学史读物,集结了数学史上那些令人尖叫的闪耀时刻,为读者展示每一个时刻给人类文明带来的后果和相互交织的影响。 如果说,数学是上帝给人们的说明书,那这本书就是对说明书的解读。 欧几里得以外的宇宙不是只有三维, 虚数的由来从一段背叛的历史中产生, 无理数的发现居然来自法老王的挑战, 自然数0中充满禅意的虚无解脱了人们对自然数的认识 数学的浪漫和璀璨,远远比你想象中要简单!
教师应该创造一个个的学习环境,让学生自己去冒险,探讨数学知识。 这本书里面的教学案例就是以学生和现实中的实物为教具,每个案例都是教师创造一个个的学习环境,让学生自己去冒险,探讨数学知识。 马丁 克莱默,一位沉迷于创造不一样的课堂的德国数学教师,他的课堂以学生和现实中的实物为教具,不仅仅包含数学知识原理,还有很多的动手操作,而且每个教学案例后面都附有相关的教育学背景知识。了解了课堂成功的原因及其系统性背景,每位读者都可以从模仿者成为设计者。作者将她多年的研究成果和智慧传授给各位教师,书中的内容一定会在数学学习方面对所有人产生帮助。
吴老师认为,学好数学并不难。数学就在我们周围,我们每个人都是天生的数学家。只要经过合适的引导,学会理解数学背后的美与逻辑,我们每个人都能爱上数学、擅长数学。 在这本书中,吴老师通过26个生动有趣的话题,如闪电和血管中蕴藏的分形几何知识、向日葵图案与斐波那契数列的奇妙关系、蝴蝶效应背后的数学解释、运用代数方法破解魔术等,向读者展示了运用数学思维理解问题、分析问题并终解决问题的全过程,为读者打开了隐藏在暗处的数学之门。
本书从初中入学考试、高中入学考试、大学入学考试等数量众多的问题当中,选取了23道经典的题目作为题材,告诉你理解数理思维的7个方面,掌握解决未知问题的能力: 通过对信息进行整理来观察问题:信息整理能力和观察力; 根据情况对问题进行具体化或抽象化处理:想象力和模式化能力; 对有难度的题目,将其分解为更易于思考的题目:分解问题能力和变换力; 对该问题进行归纳总结,有序地进行说明:总结说明力。
一个图形怎么才能有多于一个但又少于两个面? 一个高度准确的医药测试,有可能更容易得出错误的结论吗? 如果只能看到销售数据的第一位数字,你怎么才能知道你的会计是不是在说谎? …… 在我们的生活中,数学无处不在,真实、有趣而美妙。当你开始用数学的眼光去观察世界,生活或许会变得更加简单而确定,你准备好了吗? 爱德华·沙伊纳曼,“沙伊纳曼定理”的命名人,知名的数学家和教育家,会在这本书中帮我们发现和解答身边有趣的数学问题,带领我们走进那个关于数字、图形和不确定性的美丽新世界。
《这才是好读的数学史》介绍了数学从有记载的源头向最初的算术再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲和15至16世纪数学在顺应社会实践需要的基础上出现的深化、突破。在介绍数学历史的基础上,主要对30种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里德、欧拉等数学大师的风采,还特地穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学历史。
数学是一种国际语言,它构成了现今所有生活领域的基础。学了数学,我们才获得了处理数字、图表以及宇宙规则的能力。数学为我们理解周围的环境、为各种现象建模以及预测未来提供了前提。 你的答案有多正确? 数学是我们创造的吗?你可以数到多少? 26个好玩的数学议题构成了这本有趣的指南。本书用轻松易懂的语言回答了一系列与生活相关的数学问题,帮助我们避免受骗、受误导或错过机会。
★《给孩子看的趣味数学》是雅科夫 伊西达洛维奇 别莱利曼*受读者喜爱的著作之一,书中收录了丰富多样、生动有趣的数学题目。本书一共分为11个章节,前半部分内容主要介绍了我们日常生活和游戏中涉及的数学,后半部分则覆盖了统计、测量、几何等知识。作者寓教于乐,以小故事的形式向读者介绍数学,引导读者分析解决问题,有利于培养读者的学习兴趣并激发他们潜在的思考力。 ★本书以一种通俗有趣的方式带您了解数学,走进奇妙的数学世界。书中收录了丰富多样且生动有趣的数学题目,让你更深刻地体会到数学就在你的日常生活中,数学并不是你想象的那样遥不可及和晦涩难懂。书中主要介绍了我们日常生活和游戏中涉及的数学,以及统计、测量、几何等知识。通过学习,引导你科学思考、分析和解决问题,培养你的学习兴趣,激发你的潜在思考
张苍编写的《九章算术》是人类科学目前应用数学的“算经之首”,也是中国古代算法的扛鼎之作,更是一部与《几何原本》并列为世界两大数学体系的代表作。全书总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。 《九章算术》最早提出正负数的概念。特别是负数概念的提出,是人类关于数的认识的一次重大飞跃。在印度,直到7世纪才出现负数的概念;而欧洲比印度还晚1000年,直到17世纪才有人提出负数的概念。 《九章算术》提出“盈不足术”,即用两次假设,可以把一般方程式化为盈不足问题,用“盈不足术”求解。而这一解法,直到13世纪才由阿拉伯人传至欧洲,被欧洲人称为“契丹算法”(即“中国算法”)。 《九章算术》最早系统叙述了分数的约分、通分和四则运算法则,也最早提出了“线
《什么是数学:对思想和方法的基本研究(第4版)》是世界的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读《什么是数学:对思想和方法的基本研究(第4版)》。 特别对中学数学教师、大学生和高中生,《什么是数学:对思想和方法的基本研究(第4版)》都是一本极好的参考书。
据说,数学把人分成两种,一种甘之如饴,一种对它怕得要命。数量与几何,始终深深根植于每个人的意识当中,只是人们往往忽略了这一点。几个月大的婴儿就已经会简单的加法计算,就连猩猩、乌鸦、马和老鼠都会计算,当它们计算时,也会跟我们犯一样的错误。从天生的数量感,到超简单的计算技巧,再到优雅的证明过程,霍格尔·丹贝克为我们展现了老师没教/已经还给老师的美丽数学世界。作者用轻松有趣的语言,为我们展示了数学的真正含义:不是硬套公式,而是创造思维。这是一本给你勇气面对数学的书,也是一本扩展眼界的书。