对数据生产和大数据处理带来的挑战,是当代社会和人工智能时代的重点。大数据的快速发展、信息共享和社交媒体的大众化带来了各方面的风险和挑战。我们需要遵循正确的流程、方法和沟通战略 且手头的数据必须准确,才能推演出高价值的结论。而数据越多,我们面临的陷阱可能就越深。在本书中,杰森?辛克从数据通用和收集的策略、数据分析的准则、数据展示的策略出发,讨论了应对数据挑战、获得和洞察数据的价值和内涵的可行方式。
本书是深入研究互联网思维的经典之作,从互联网思维的定义到互联网思维应用的具体案例表现。作者深入浅出、条分缕析,全面阐述互联网思维的内核与精神,逐一点评当前关于互联网思维的各种观点。本书从初级的互联网思维应用到高端的粉丝经济,平台建设,自媒体营销的方法都有详细讲解介绍。让读者了解什么是互联网思维的同时还能学会把互联网思维运用到自己的工作学习已经生活中 进入大数据时代,让数据开口说话将成为司空见惯的事情,本书将从大数据时代的前因后果讲起,全面分析大数据时代的特征、企业实践的案例、大数据的发展方向、未来的机遇和挑战等内容,展现一个客观立体、自由开放的大数据时代。
本书以关系数据库为基础,以数据库的设计与编程为重点,以引进面向对象的数据库技术为特色。本书内容新颖、系 统全面;突出重点、注重总结;概念清晰、分析深入;例题丰富、实用性强。 全书从数据库系统基础、关系代数、规范化理论、SQL Server 2008 安全管理、SQL Server 2008 数据库创建和备份、数 据库的恢复与传输、SQL Server 2008 T-SQL 数据查询、SQL 高级应用、Web 编程基础、JSP 技术方面结合了实际数据库开 发需要和高等教育的特点完成编写。
本书以面向应用为原则,深入浅出的介绍了oracle平台上使用pl/sql语言进行数据库开发的技术。通过大量的示例,详细介绍了pl/sql的语言特性、使用技巧,同时配以2个在实际工作中的示例来深入的剖析了pl/sql进行oracle开发的方方面面。 本书附带1张dvd光盘,内容为作者为本书录制的全程语音教学视频及本书所涉及的源代码。 本书共分为20章,分为5大篇。涵盖的内容主要有pl/sql语言基础、开发环境、变量与类型、控制语句、数据表的管理和查询、数据表的操纵、使用pl/sql的记录与集合、各种内置函数、游标、事务处理、异常处理、子程序、包、面向对象的开发等等技术点。通过示例性的代码,由浅入深,详细介绍了每一个技术要点在实际工作中的应用,对于各种技术要点的应用场合进行了细致的分析。 本书适合于使用pl/sql进行应用程序开发的人员、对软件开发有兴趣
《数据算法:Hadoop/Spark大数据处理技巧》介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这还概要介绍了MapReduce、Hadoop和Spark。 主要包括: 完成超大量交易的购物篮分析。 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。 使用超大基因组数据完成DNA和RNA测序。 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。 推荐算法和成对文档相似性。 线性回归、Cox回归和皮尔逊(Pearson)相关分析。 等位基因频率和DNA挖掘。 社交网络分析(推荐系统、三角形计数和情感分析)。
本书提供了一种简单、高效、通用的关系型数据库索引设计方法。作者通过系统的讲解及大量的案例清晰地阐释了关系型数据库的访问路径选择原理,以及表和索引的扫描方式,详尽地讲解了如何快速地估算SQL运行的CPU时间及执行时间,帮助读者从原理上理解SQL、表及索引结构、访问方式等对关系型数据库造成的影响,并能够运用量化的方法进行判断和优化,指导关系型数据库的索引设计。