《测度论(第1卷)(影印版)》是作者在莫斯科国立大学数学力学系的讲稿基础上编写而成的。卷包括了通常测度论教材中的内容:测度的构造与延拓,Lebesgue积分的定义及基本性质,Jordan分解,Radon-Nikodym定理,Fourier变换,卷积,L空间,测度空间,Newton-Leibniz公式,极大函数,Henstock-Kurzweil积分等每章最后都附有非常丰富的补充与习题,其中包含许多有用的知识,例如:Whitney分解,Lebesgue-Stieltjes积分,Hausdorff度,Brunn-Minkowski不等式,Hellinger积分与Hellinger距离,BMO类,Calderon-Zygmund分解等。书的最后有详尽的参考文献及历史注记。这是一本很好的研究生教材和教学参考书。
《数学分析理论及应用》共分12章,主要内容包括函数、极限与连续;导数与微分;微分基本定理及其应用;不定积分;定积分及其应用;数项级数;函数项级数;多元函数的极限与连续;多元函数微分学及其应用;反常积分与含参变量的积分;重积分及其应用;曲线积分与曲面积分等。 《数学分析理论及应用》结构合理、阐述准确、通俗易懂、深入浅出、条理清楚、逻辑性强,易于学习和理解。本书既可作为数学专业学生的参考书,可也作为非数学专业学生的参考书,对其他课程的学习也具有很好的参考价值。全书由许尔伟、毛耀忠、安乐担任主编。
经典统计理论和机器学习方法为数据挖掘提供了必要的分析技术。本书系统地介绍统计分析和机器学习领域中很为重要和流行的多种技术及其基本原理,在详解有关算法的基础上,结合大量R语言实例演示了这些理论在实践中的使用方法。具体内容被分成三个部分,即R语言编程基础、基于统计的数据分析方法以及机器学习理论。统计分析与机器学习部分又具体介绍了参数估计、假设检验、极大似然估计、非参数检验方法(包括列联分析、符号检验、符号秩检验等)、方差分析、线性回归(包括岭回归和Lasso方法)、逻辑回归、支持向量机、聚类分析(包括K均值算法和EM算法)和人工神经网络等内容。同时,统计理论的介绍也为深化读者对于后续机器学习部分的理解提供了很大助益。知识结构和阅读进度的安排上既兼顾了循序渐进的学习规律,亦统筹考虑了夯实基础的
本书介绍了多元数据分析的现代方法,主要讲解多元统计学中的方法及其应用。作者通过大量的示例说明每种技术的工作方式以及应用方法,还应用几何图形的方法来开发学生的直觉力,帮助读者对各种方法有一个比较形象的认识。书中大量习题和示例采用了来源于心理学、社会学和营销学等各个学科的真实数据。因为本书提供了各种类型的应用,所以适用于很多专业的教学,不仅适合营销学、组织行为学、会计学专业,还适合工程学、教育学、经济学、心理学、社会学和统计学等专业。
本书通过八讲内容:连续统、极限、函数、级数、导数、积分、函数的级数展开和微分方程,概述了数学分析中易于了解和记忆的基本思想、基本概念和基本方法,使读者可在短时间内对数学分析的全貌有初步的了解,并学会掌握数学分析的精髓。本书虽是给那些想提高自己数学分析水平的工程师写的,但对于经济学家、数学教师、数学系的学生等,都具有非凡意义。
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是作者在莫斯科大学力学-数学系讲授多遍数学分析的基础上写成的。全书共二卷,自1981年版出版以来,至今已经修订为第4版。在内容方面,作者力图使与其平行的以及后继的分析、代数和几何方面的现代数学课程之间联系更加紧密,把重点移到一般数学中最有本质意义的那些概念和方法上,并改进语言的叙述,使之与现代数学科学文献的语言适当接近;另一方面,在保持数学一般理论叙述严谨性的同时,对反映其自然科学源泉和应用的要求也有充分体现。 俄罗斯科学院院士、世界数学家В.И.阿诺尔德这样评价本书:В.А.卓里奇的教科书是现有供大学数学系、物理系学生用的分析教科书中最成功的。它与传统分析教科书的重要区别在于,它一方面更贴近自然科学 (特别是