平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
本书为三角形趣谈,全书共分10章,每章后配有练习题,书后附有习题参考答案。本书适合初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教师进修学院数学专业开设的“竞赛数学”课教材及*、省级骨干教师培训班参考使用。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
【内容简介】 本书研究了反演变换及其性质、圆与反演变换、两圆的互反性等几何知识,系统地阐述了这些几何变换的理论和它们在几何证题方面的应用. 本书写得简明扼要,通俗易懂,引人入胜,是中学生、大学低年级学生以及他们的教师和几何爱好者的一本很好的参考书.
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及*。省级骨干教师培训班参考用书。
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势.对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。
如在变分法的进一步发展范畴中观察,辛几何的公理系统范围毕竟太窄,舍弃了很多东西。因此就要破茧,要向更广阔天地拓展。以下按前述辛的4点局限性,逐个讲述。本书破茧只讲简单基本的内容,只讲基本思路而不追求详细成果。不求高深,而求简明、易懂、实用。
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支——解析几何学——的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。 本书对大学、专科学校学生也有参考价值。
《介绍丛书:分形学》2000年首次出版,曾被翻译成多国语言出版发行,丛书的全球销量已达到24亿,本书在我国首次翻译出版。 浮云、繁星、麦田怪圈和奔流是怎么国事?这些大自然中的奥秘如何解答? 分形学无处不在,它的研究被应用于环保、信号处理、艺术创作甚至宇宙探索当中;它是数学、艺术、哲学甚至宗教的交集。 在技术的发展过程中,许多传统的科学难题,由于分形的引入而取得显著进展。本书是轻松有趣的分形学入门读物。分形学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。本书正是向大众介绍这一奇异学科的敲门砖和引路人。本书的插画诙谐生动,语言通俗易懂,翻译精准到位,是带你入门的*选择,本书出自分形极客之手,深受国外读者青睐
《离散数学》是创新方法工作专项项目“科学思维、科学方法在高等学校教学创新中的应用与实践KM教学法的研究与实践”的主要研究成果之一。本书共分4篇:篇为数理逻辑,包括命题逻辑和谓词逻辑;第2篇为集合论,包括集合、二元关系、函数、集合的基数;第3篇为代数结构,包括代数、群论初步、格与布尔代数;第4篇为图论,包括图的基本概念、图的连通性、图的矩阵表示和特殊图等。本书每章均有本章小结、相关知识点的思维形式注记图和扩展阅读,每篇均有本篇知识逻辑结构图,力图在内容、体例等方面形的模式。 本书可作为高等学校计算机及相关离散数学课程教材,也可供相关的教学科研人员与工程技术人员参考。