希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(上卷)(基础篇)(直线型)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(上卷)(基础篇)(直线型)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
笛卡尔(1596-1690)创立的解析几何的诞生则被称为数学史上的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡尔的《几何学》共分三卷,一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和"超立体"的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种"普遍"的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
本书探讨了三角形和圆形的几何结构,主要专注于欧氏理论的延伸并详细地研究了许多相关定理。在讨论的数百个定理和推论中,一些已经给出了完整的证明,另一些未证明的用以留作读者练习使用。 本书适合大、中学师生及数学爱好者学习和收藏。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(下卷)(提高篇)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(下卷)(提高篇)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
本书从国内外各级数学竞赛中精选提炼出百余道具有典型性的平面几何试题,分为十种题型,各题型由易到难分为A,B,C三类。每道题都有多种解法。在解题方法的使用上,更注重于常规的平面几何方法,每道题都有作者首创的解法,突出了“新颖”一词。本书以大量的具体的事例说明:可以采用常规的而又灵活的方法,简洁地解决平面几何难题,有利于拓展读者的视野,开启读者的思维,扎实地训练读者的基本功。 本书适合于优秀的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也适合于平面几何爱好者使用。
本书是XYZ Press已出版的两本几何书籍,即《106个几何问题:来自Awe-someMath夏季课程》和《107个几何问题:来自Awe-someMath全年课程》的非正式续篇。本书以这两本书的内容为背景,可作为几何学家以及备战高难度国际数学奥林匹克竞赛(IMO)的学生们使用的习题集。
波拉索洛夫编著的《俄罗斯立体几何问题集》提 供了俄罗斯在中学,其中包括在专门化的学校学习的 几乎所有立体几何的问题及 各题的提示。 本书适用于大学、中学师生和数学奥林匹克选手 及教练员参考阅读。
本书大部分内容为叶中豪、潘成华、严君啸、杨运新、萧振纲等几何名师的几何原创题,题目新颖、有深度、耐人寻味,代表了当代初等几何的发展趋势,十分有益于中学生提高对几何的兴趣,叶中豪先生的几何题结构清晰简单、线条美妙、内涵丰富,深受广大几何爱好者喜爱。书中作者运用了各种奇妙的手段、精湛的思路、合理的辅助线等思维方法解题,有助于广大读者借鉴和学习。 本书适合于初高中学生及教师学习使用,也适用于数学爱好者参考阅读。
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
这本小册子中研究的问题是只利用一把直尺或者再利用某个辅助图形作图,与此有关的是研究射影几何的一些基本概念。 这本小册子的读者对象是高年级中学生、教育学院和大学低年级学生以及数学教师。
本书是美国著名数学竞赛专家 Titu andreescu教授及其团队精心编写的试题集系列中的一本 三角函数是构建 Fourier分析、微分方程等诸多数学分支的基础的关键要素,在导航、天文学、建筑学、地图学和数字成像等领域起着至关重要的作用,并且频繁出现在各种数学竞 赛、特别是数学奥林匹克竞赛的题目中.本书给出了关于三角函数的全面综述,介绍了它的基本定义和基本性质,深入研究了三角函数作为实值函数的性质,并且精心挑选了115个三角学的入门问题和高级问题,不仅给出了这些问题的详细解答,还概述了这些问题背后的核心思想 本书适合于热爱数学的广大教师和学生使用,也可供从事数学竞赛工作的相关人员参考
在第1章中编者呈现了最主要的理论,并给出大量的例题,这有助于解决后面的问题。第2章提出了一些问题,要解决这些问题,你需要对在 理论与例题 这一章中出现的材料有一个基本的理解。在第3章中你将会发现一些既需要更深刻理解这一理论的问题,也需要提升在关键概念之间建立关联的能力。在第4章和第5章中编者将提供这些问题的对应解答。 本书适合于正在接受数学奥林匹克训练的学生以及期待在三角学及其相关领域提升能力的读者参考阅读。
《数林外传系列:向量复数与质点》主要论述用向量解决常见几何问题的方法,是基于向量相加的首尾衔接规则的回路法。全书共7章,从被人忽视的向量回路人手,介绍向量形式的定比分点公式和四边形中位线公式及其应用,对垂直问题、圆问题、三角形五心问题等作了专题研究;同时探讨了与向量法密切相关的复数法和质点法;对于不同解法之间的优劣,列举大量实例进行比较研究。 《数林外传系列:向量复数与质点》是在《绕来绕去的向量法》基础上进一步研究的成果,可供中学和大学的数学教师及理工科教师、中学生和大学生、数学爱好者以及数学教育研究者参考。
本书是作者结合多年的Python语言课程教学实践编写的。其内容包括:Python介绍、Python基础知识、Python程序设计、Python网络爬虫、Python高等数学、Python线性代数、Python概率统计、Python插值拟合与常微分方程求解及Python在数学建模中的应用共九章。书中配备了较多的实例,这些实例是学习Python与数学建模必须掌握的基本技能。 本书由浅入深、由易到难,既可作为在职教师学习Python的自学用书,也可作为数学建模培训班学生的培训。
《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《灾害与社会管理专家论坛丛书:防灾减灾与社会管理创新(2011)》是“灾害与社会管理专家论坛丛书”之一,包括:统筹规划有序推进加快社会保障制度建设;当前加强和创新社会管理面临的十大问题;关于未来国家综合防灾减灾战略理念、原则与战略目标的断想;社会管理在创新中追求卓越;青海东部自然灾害及发展态势;我国防汛抗旱减灾与管理;直面灾害——医学救援的时代特征与历史重任;国家综合防灾减灾的战略选择与基本思路等内容。