“青少年心灵治愈故事系列”,包含了六本书,收录了近四百个精彩的小故事,囊括了勇气、诚信、认知自我、专注、友爱、情绪管理等各个不同的情商培养主题,是暖心的读物,写给正值青春前期,在经历某种程度的迷茫与疼痛的人。 李加臣编著的这本《说话要算数》就是该系列丛书之一,精心选编了数十个精彩的以“诚信”为主题的小故事。这些故事,或出自一些对后世有着深远影响的历史事件,或来自古今中外名圣先哲们的生活片段。书中的每个故事都不长,却以通俗的语言和生动的方式诠释着本来简单的人生真谛与深刻道理。每个故事都有“心灵物语”和“心灵加油站”两个板块,为读者提供了一种阅读引导,这里既阐述了故事的内涵,也给了读者静心思考的空间。每个故事都配有精美插图,美图美文,带领读者走进美好的故事世界。
《数值分析全真试题解析(2007-2012)》,本书对东南大学近6年来工学硕士研究生、工程硕士研究生学位课程考试、工学博士研究生入学考试“数值分析”以及理学博士研究生入学考试“高等数值分析”的试题作了详细的解答, 部分题目还给出了多种解法. 内容包括误差分析、非线性方程求根、线性方程组数值解法、函数插值与逼近、数值微分与数值积分、常微分方程初值问题的数值解法、偏微分方程数值解法以及求矩阵特征值的幂法。
An early experiment that conceives the basic idea of Monte Carlo pu-tatios is known as "Buffon'needle",first stated by Georges Louis Leclerc Comte de Buffon in 1777.In this well-known experiment,on throws a needle of length l onto a flat surface with a grid of parallel lines with spacing.It is easy to pute that,under ideal conditions,the chance that the needle will intersect one of the lines in .Thus,if we lep pN be the Proportion of "intersects"in N throws,we can have an estimate of π as wjocj will"converge"to π as N increases to infinity.
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
THE major part of thiook (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which haeen only slightly changed in the present edition.
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。 本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
THE major part of thiook (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which haeen only slightly changed in the present edition.
“青少年心灵治愈故事系列”,包含了六本书,收录了近四百个精彩的小故事,囊括了勇气、诚信、认知自我、专注、友爱、情绪管理等各个不同的情商培养主题,是暖心的读物,写给正值青春前期,在经历某种程度的迷茫与疼痛的人。 李加臣编著的这本《说话要算数》就是该系列丛书之一,精心选编了数十个精彩的以“诚信”为主题的小故事。这些故事,或出自一些对后世有着深远影响的历史事件,或来自古今中外名圣先哲们的生活片段。书中的每个故事都不长,却以通俗的语言和生动的方式诠释着本来简单的人生真谛与深刻道理。每个故事都有“心灵物语”和“心灵加油站”两个板块,为读者提供了一种阅读引导,这里既阐述了故事的内涵,也给了读者静心思考的空间。每个故事都配有精美插图,美图美文,带领读者走进美好的故事世界。
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书主要介绍了一般的有限元基本理论和有限元计算技术,以及在弹性力学、结构动力学、流体运动、传质与传热等问题中的有限元分析方法和典型应用;介绍了非线性有限元分析方法,包括材料非线性、接触非线性、大变形大应变和结构非线性等方面的有限元理论内容;还介绍了其他一些与有限元方法相关的现代数值计算方法。另外,书中突出了有限元方法的计算技术,如在MATLAB下的编程方法;介绍了多种工程应用的实例和研究结果。 本书内容精练,以工程中的问题类型为脉络介绍有限元的应用,以机械工程、土木工程等工科相关专业本科生、研究生为读者对象,亦可供从事数值分析的工程技术人员参考。