★张益唐、吴军力荐! 国民教师 李永乐数学科普作品! ★神奇提分、神奇爱上数学!让孩子更接近自己的名校梦! ★不一样的数学思维,让孩子鹤立鸡群 ★开拓数学眼界,训练数学思维,感受数学之美 ★开启青少年数学思维,开拓数学视野 ★不枯燥、不无聊,100 脑洞大开的问题,神奇的数学太好玩了! ★严谨的解读 有趣的生活案例,数学竟然如此有趣! 《神奇的数学》,6大数学门类,100 脑洞大开的问题:考清华和中500万元哪个更难?葫芦娃救爷爷,为啥一个一个上?一个西瓜切4刀,最多有几块?如何公平地切蛋糕?囚徒困境是怎么回事?香蕉皮和橘子皮,谁能展成平面? 数学从未如此好玩!
《这才是好读的数学史》介绍了数学从有记载的源头向*初的算术再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲和15至16世纪数学在顺应社会实践需要的基础上出现的深化、突破。在介绍数学历史的基础上,主要对30种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里德、欧拉等数学大师的风采,还特地穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学历史。
一个图形怎么才能有多于一个但又少于两个面? 一个高度精确的医药测试,有可能更容易得出错误的结论吗? 如果只能看到销售数据的*位数字,你怎么才能知道你的会计是不是在说谎? 在我们的生活中,数学无处不在,真实、有趣而美妙。当你开始用数学的眼光去观察世界,生活或许会变得更加简单而确定,你准备好了吗? 爱德华?沙伊纳曼, 沙伊纳曼定理 的命名人,知名的数学家和教育家,会在这本书中帮我们发现和解答身边有趣的数学问题,带领我们走进那个关于数字、图形和不确定性的美丽新世界。
数学家都是怎样思考的?他们的工作到底是什么?他们如何在日常生活中发现种种与数学有关的猜想并加以证明?为什么一个尚未解开的数学猜想,会让近一个世纪的数学家为之痴迷?《大开眼界 数字的秘密生活:*有趣的50个数学故事》分为六个部分,除了介绍英雄般的数学家、描述著名的无解猜想和破解数字难题的精彩过程外,还穿插了《圣经》密码、俄罗斯方块、牛顿的世界末日预言等令人着迷的故事。这些情节丰富、充满娱乐性的小插曲,让我们看到数学跨越了生活的每一个层面,从法律到地理,从选举到植物学,带给我们愉悦和惊喜。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
这是一本充满欢乐的数学书。作者本 奥尔林在做数学老师的十几年里发现,大多数学校都把数学这门课教得乏味透顶,他自己开始也是这样。有一天他在解释一道题时画了一条滑稽的小狗,惹得学生们哄堂大笑,这让他豁然开朗:孩子们看到一向聪明、专业的老师画的画这么 烂 ,突然觉得数学不再高高在上,而是变得可亲起来。从此,他的数学课充满了欢声笑语,学生有了飞跃的进步,并且获得了数学学习的秘籍 理解。 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因
《欢乐数学》 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 通过所有这些有趣的例子,奥尔林老师关注的是让所有人认识到数学真正的核心:思维。他告诉孩子和所有人,学数学不是为了无聊地秀智商,而是可以学会用数学思维看待这个世界的运行,发现数学的魅力。 《欢乐数学之疯狂微积分》 微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成就一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成就。 在书中所描述的这些令人神往的人物中,艾萨克 牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲 热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米 诺特被阿尔伯特 爱因斯坦描述为数学史上重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟 拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍了其他
《从一到无穷大》是当今世界最有影响的科普经典名著之一,20世纪70年代末由科学出版社引进出版后,曾在国内引起很大反响,直接影响了众多的科普工作者。本书根据原书最新版进行了修订,书中以生动的语言介绍了20世纪以来科学中的一些重大进展。先漫谈一些基本的数学知识,然后用一些有趣的比喻,阐述了爱因斯胆的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因)和宏观世界(如太阳系、星系等)方面的成就。全书图文并茂,幽默生动,深入浅出,适合中等以上文化水平的广大读者阅读。
《欢乐数学》 兴趣引导,学会用数学的眼光看世界。 数学家眼中的数学是什么样的?A4纸的尺寸为什么是合理的?蚂蚁从高处掉下来为什么摔不死?从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因,你会发现一切问题都是数学问题。 《欢乐数学之疯狂微积分》 原理入门,形象解读微积分思想精髓。 牛顿和莱布尼茨到底谁的贡献大?用黄瓜片和牙签就可以演示如何求圆的面积和周长?福尔摩斯因为不懂微积分而破不了案?你还会知道为何月亮不会坠落、什么是拐点和指数级增长 《欢乐数学之游戏大闯关》 玩即是学,用游戏锻炼数学思维。 终极井字棋、豆芽游戏、收税员、星系棋 70多款世界各国经典数学游戏,从逻辑到概率,从几何到拓扑,从组合到博弈论。只需纸、笔、几个硬币,学会1分钟,好玩1辈子。自己玩、亲子玩、同学玩,在游戏中轻松领会
与历史上的数学天才一起挑战头脑体操! 315个经典游戏开发大脑潜能,呈现数学之美。 在《迷人的数学》中,世界著名智力游戏专家、百万级畅销书作者伊凡 莫斯科维奇,用他标志性的精彩图解,呈现了315个经典烧脑游戏,其中不仅有许多历史上著名的数学谜题,也有他自己设计的独特游戏。 作者也巧妙地将从史前时代到21世纪的数学史融入这些游戏题中,让你在挑战谜题、开启大脑潜能的同时,了解数学前进的轨迹,领略数学的迷人魅力。这是一本有观点、有故事的数学益智书,献给所有热爱美感、惊奇、挑战、数学与游戏的人。
无
《超图解秒懂数学》采用独特的图解方法阐释数学的基本原理,将抽象的数学知识形象化、生活化、趣味化,图文并茂,轻松培养读者的数学思维和图形化思维能力。全书分为数与式、图形、方程式与函数、概率与统计四大版块,全面涵盖了从小学到高中的数学基础概念,并配有各年级学习内容对照表,方便读者按需学习。 本书在编排上充分考虑到各类读者群体的需求。对小学生来说,父母的辅导不仅能够提升他的成绩,而且能够加深亲子感情,因此对于加法、减法、分数、小数等小学知识,本书运用全彩的数字、有趣的插图和例题,吸引孩子的兴趣,让父母和孩子都能够快乐地沉浸在数学世界中。对初高中生而言,想要取得好成绩,自学不可或缺,因此对于方程、函数、概率、微积分等初高中数学知识,本书利用简单的插图、生活化的例题、清晰的
你会因为进行简单的计算而对数学感到厌烦吗?你会随着数学学习的深入,因为不知道如何解答而对数学学习产生畏难情绪吗?你会因为感到学习困难而认为数学没有意思,认为数学就是枯燥无味的吗? 本书会帮你解决这些问题,颠覆你对数学学习的印象。 本书共27个主题,作者将每道题目的第1问设计成稍微思考,或者看一下 解题方法 便可明白,从第2问开始设计成能够轻松 挑战 的形式。让读者保持一种节奏良好的游戏感。 由浅入深,由简单到困难,把题目设置成不同的阶梯挑战,慢慢建立数学学习信心;不同的解题角度,打开你的数学学习思路,只有你想不到没有你做不到,让你越做越有趣,彻底爱上数学学习。 快点来进行挑战吧,每天一个主题,获得 智慧带来的喜悦 。
莱昂哈德 欧拉的多面体公式 V-E F=2 被数学家们誉为第二优美的数学定理。从足球和宝石到美妙的穹顶建筑,这一公式描述了许多物体的结构。本书围绕欧拉多面体公式及其数学思想,从古希腊数学讲起,直到当代拓扑学的前沿研究,介绍了这一公式的发现及其对拓扑学研究的深远影响。书中包括丰富的插图与例子,展示了多面体公式的许多优雅而出人意料的应用,例如说明为什么地球上总有一些无风的地方,如何通过数树来测量林地的面积,以及为任何地图涂色需要多少支蜡笔,等等。在书中,读者将看到一群质疑、完善多面体公式和为这个非凡定理的发展做出贡献的杰出数学家,在数学史的长河中,他们都多面体的研究和拓扑学的发展做出了自己的贡献。 本书适合对数学,尤其是拓扑学及数学史感兴趣的读者阅读。
《九章算术》是人类科学史上应用数学的 算经之首 ,也是中国古代算法的扛鼎之作,更是一部与《几何原本》并列为世界两大数学体系的代表作。全书总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。 《九章算术》提出正负数的概念,特别是负数概念的提出,是人类关于数的认识的一次重大飞跃。在印度,直到7世纪才出现负数的概念;而欧洲比印度还晚1000年,直到17世纪才有人提出负数的概念。 《九章算术》提出 盈不足术 ,即用两次假设,可以把一般方程式化为盈不足问题,用 盈不足术 求解。而这一解法,直到13世纪才由阿拉伯人传至欧洲,被欧洲人称为 契丹算法 (即 中国算法 )。 《九章算术》系统叙述了分数的约分、通分和四则运算法则,提出了 线性方程组 的概念,并系统地总结了它
本书是享誉世界的科普经典著作,不仅影响了众多科研和科普工作者,更是将很多 门外汉 领进了自然科学的大门。 全书用数学的发展和公式的演进作为线索,从数学的诞生讲到生命和宇宙的诞生,融入了物理学、生物学甚至哲学等科学发展的诸多领域,不仅为读者描绘一幅全面的宇宙图景,更是向读者传递了科学的思维方法、科学的认识角度、科学的世界观。
这是一本通俗的数学史读物,集结了数学史上那些令人尖叫的闪耀时刻,为读者展示每一个时刻给人类文明带来的后果和相互交织的影响。 如果说,数学是上帝给人们的说明书,那这本书就是对说明书的解读。 欧几里得以外的宇宙不是只有三维, 虚数的由来从一段背叛的历史中产生, 无理数的发现居然来自法老王的挑战, 自然数0中充满禅意的虚无解脱了人们对自然数的认识 数学的浪漫和璀璨,远远比你想象中要简单!
你可能还依稀记得在学校学过的数学:几何、代数、微积分,也可能你早就将这些知识抛在脑后。你可能精于计算,也可能罹患 数学恐惧症 ,千方百计地避免和数字打交道。无论你是哪种人,数千年来人类在数学上的非凡成就,都塑造和改变了你的世界和人生。 哥伦布发现新大陆得益于对三角形的理解,现代工业社会的诞生则始于对数字的掌握。数学为文艺复兴递上凿子,也促进了世界各地伟大建筑的诞生。数字是全人类的通用语言,语言不通的商人得以依靠数学建立互利贸易。数学也是燃料,助力人类实现从自由市场到登月的一系列抱负。 我们的生活方式、制度和基础设施均建立在数字之上。无论商业、住房、医药、政治、战争、农业,还是艺术、旅行、科技,几乎我们存在的每一个方面都以数学为基础被建立起来。人类的故事与数学密切交织,我们永远
本书主要涉及大一上学期要学的一元微积分,书中从高中阶段十分熟悉的数列出发,引出数列极限的概念,进而引出函数极限的定义,并由此引申出导数、微分、积分,其间穿插讲解无穷小量、无穷大量、函数凹凸性、极值与最值等内容,并简单介绍了各类中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)、洛必达法则、泰勒公式等常用定理和公式。全书语言幽默,文风轻快,用较短的篇幅将微积分入门的基础概念生动地展示出来。 这是为大一新生而写的数学书,主要有以下特点: 1.尽量由中学数学知识引出大学数学的内容; 2.不面面俱到,不追求绝对严谨; 3.通俗易懂, 保姆级 的讲解; 4.借用国学精粹引入数学概念; 5.适当讲述数学典故,激发学习兴趣; 6.穿插一些数学幽默小故事,缓解学习的紧张感; 7.让数学与生活挂钩; 8.玩梗,也
《自然哲学的数学原理》书中牛顿的成就多到数不胜数,明显的例子就是牛顿运动定律,这一定律至今仍然传授于世界各地。牛顿为微积分提供了概念基础,尽管他在书中没有明确使用微积分,但精通数学的读者可能会猜测牛顿正在使用一种新技术。至关重要的是,牛顿从他的平方反比定律推导出了开普勒三定律。他证明了开普勒方程没有代数解,并提供了计算方法。在牛顿这部划时代伟大的著作中,读者更能欣赏到他在物理学之外的卓越成就。牛顿在本书中的只言片语,如今也将被成千上万的作者呈现在无数论文中,这是科学的胜利。牛顿不仅解决了长期以来如何求证行星轨道的难题,而且还用他的理论解释了很长时间里独立且无法解释的现象:潮汐、岁差、月球的轨道、单摆模型和彗星的出现。在本书中,牛顿证明了现代科学的标志是什么 将尽可能多种不同
本书为日本数学家、菲尔兹奖得主广中平?v的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、亲子教育中培养创造性思维的原则与方法。本书是广中平?v先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
《莫斯科智力游戏:359道数学趣味题》: 俄罗斯非常优秀、流行的智力游戏书。俄罗斯数学世界闻名,更是青少年数学教育启蒙的 领路者 。本书讲解359道经典数学趣味题,由易到难进阶,涉及代数、几何等数学各大板块,乐趣与难度统一,数学思想与解题技巧并存。本书的特点不在于刷题,而是用很多有趣的数学题让读者爱上数学,了解数学思想。 《神奇的数学:517个开发大脑潜能的数学谜题》(2本): 讲解517个开发大脑潜能的数学谜题,呈现数学之奇妙和数学的美。本书是英国知名智力游戏专家莫斯科维奇的好玩趣味数学书,内容包含几何、形状和多边形、逻辑和概率、拓扑学、科学、曲线和圆等,激发思考、开发大脑思维,展示了数学思维的无限可能。
由数学大师和著名数学家亲自执笔撰写的这套数学小丛书是我国数学普及读物中的精品,曾激发一代青少年学习数学的兴趣。书中蕴涵的深刻而富有启发性的思想,促进了无数中学生在求学的道路上健康成长。