本书是一本可以激发读者数学兴趣,启迪数学思维,开阔知识眼界的妙趣横生的数学科普读物。 全书共五章,从不同角度诠释数学之美。 第一章:生活中美丽的数学 从日常点滴中窥见数学之美。从投资理财到项目管理,从密码学到代数几何,数学已渗透到我们生活中的每一个角落。 第二章:上帝的骰子 排列组合与概率 用生动有趣的案例带你领略概率的巧思与随机的神奇。 第三章:囚徒的困局 逻辑推理、决策、斗争与对策 带你体验推理、决策、博弈的乐趣,做一把福尔摩斯 第四章:中外古代趣题拾零 追寻古圣先贤的足迹,带你体会中外数学的智慧 第五章:当数学遇到计算机 从计算机的二进制世界到数码相片,从5G通讯到区块链的实现,本章带你从高科技中发现数学的智慧之光。
如何一眼识破庞氏骗局、做好理财、投资? 如何在购房贷款时做出*选择? 如何增加简历通过初筛的几率? 如何规划公司的发展曲线? 更重要的是, 如何提升自己的认知水平? 如何改变自己的思维方式? 如果你也关注这些问题,希望借助数学思维来更好地提升自己、认知世界,这本书希望你一定要看。 这是一本写给所有人的数学通识讲义,书中通过关键知识点串联起整个数学体系,帮助你逐步建立起属于自己的数学知识结构。而贯穿全书的数学发展史,其实就是人类认知的发展史,你可以借此逐步训练自己的认知:从直观到抽象,从静态到动态,从宏观到微观,从随意到确定再到随机。
人类什么时候在绳子上打下个结? 为什么位女数学家会死于非命? 有可能把一个球体的内部翻转出来吗? 这些只是这本插图精美的书中涉及的众多引人深思的问题的一小部分。作者皮寇弗为我们展示了数学发展史重要的里程碑事件背后的魔力与神奇,包括人类曾经思索过的古怪的问题,从公元前一亿五千万年到的前沿突破。 数学已经渗入每一个科学领域,并且在生物学、物理、化学、经济、社会学和工程等方面扮演着无法替代的角色。我们可以用数学说明夕阳色彩分布的情况,也可以用来说明人类的大脑结构,可以帮助我们探索比原子还小的量子世界,也可以帮助我们描绘遥不可及的银河系。 在现实世界运用的著名计算公式和数学定理背后隐藏着数学家们一生的传奇故事。跟随皮寇弗踏上这趟数学之旅,探索数学历重要的250个里程碑事件,从蚂蚁计数到把
微积分是人类历史上的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。除此之外,我们更应该关注的事实是:如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把5 000首歌曲装进口袋里。 在人类文明进程中的这些具有里程碑意义的发明和发现背后,微积分究竟扮演了什么样的角色?围绕曲线之谜、运动之谜和变化之谜,毕达哥拉斯、阿基米德、伽利略、开普勒、牛顿、莱布尼茨、爱因斯坦、薛定谔等如何用微积分的 钥匙 打开了宇宙奥秘之 锁 ?这些谜题的解决方案对人类文明的进程和我们的日常生活又产生了什么样的深远影响? 在《微积分的力量》书中,应用数学家兼 导游 斯托加茨将用一种 讲故事 和 看展览 的方式为你一一
数学是一门求真与求美的学科。数学对于解释大自然的纷繁现象具有基本的重要性, 兼具诗歌与散文的内在气质。 《数理人文》为数学家丘成桐先生主编的一系列科普读物,以数学、物理及工程为经,人文艺术为纬,旨在引导读者领略数理之美,感悟人文之魅力,启迪数理与人文相结合之思维,培养广泛的兴趣和独立思考能力。
无穷大到底有多大?空间有内外之分吗?原子是如何构成的?三维世界的我们如何想象四维空间?生物与非生物的界限在哪里? 《从一到无穷大》以生动有趣的语言,深入浅出地介绍了数学、物理学、生物学及天文学的基本概念与前沿知识。从基础的数学概念如大数与无穷大,到相对论、量子力学等深奥理论,再到生物遗传、宇宙结构等宏大议题,通过一个个故事串联,将复杂的科学概念变得易于理解,让我们在享受阅读乐趣的同时,拓宽科学视野,领略自然科学的魅力。无论是对科学感兴趣的初学者还是有一定科学基础的读者,都能从中受益匪浅。
《神奇的数学:牛津教授给青少年的讲座》是作者在一系列针对青少年的数学普及讲座内容基础上汇集整理的一本数学科普书,介绍了一些数学中很有神秘色彩的知识,内容浅显易懂,语言生动活泼,很容易激发读者尤其是青少年读者了解数学的兴趣。 《神奇的数学:牛津教授给青少年的讲座》适合所有对数学知识感兴趣的读者。
说到三角函数或正弦、余弦、正切等,为了应付考试而死记硬背公式但并不十分明白的人也不在少数。也有人明明学习了,但觉得在生活中一次也没有用到过三角函数。 其实人们生活在现代社会,肯定受到过三角函数的“恩惠”。因为从网络上的动画制作到地震速报,很多技术的基础都是三角函数。 本书通过对三角函数的起源与使用方法,以及从三角函数中诞生的实用数学的“代表选手”??“傅里叶分析”的原理等进行挖掘,形成了内容较为充实的一册“三角函数”科普读物。 第一章在说明三角函数之前,对三角形的性质及使用方法,以及三角函数的起源进行介绍;第二章则对三角函数的基础知识(三角比)进行清晰的解释;在第三章中介绍了相关的重要定理并对古代数学家进行的三角函数研究进行介绍;在第四章中脱离“三角形”的束缚,对三角函数的定义进
麦克斯韦方程组以一种近乎完美的方式统一了电和磁,并预言光就是一种电磁波,这是物理学家在统一之路上的巨大进步。很多人都知道麦克斯韦方程组,知道它极尽优美,但是能看懂这组方程的人却不多,因为它需要用到微积分,并不像许多方程那样简单直观。 因此,《什么是麦克斯韦方程组》会依然延续「长尾科普系列」的风格,继续用通俗的语言和缜密的逻辑将麦克斯韦方程组的前前后后都讲清楚,让不懂微积分的中小学生也能轻松读懂这组伟大的方程。 全书行文流畅,语言生动,图文并茂,可读性强。是一部不可多得的原创科普佳作。 强烈推荐给对世界充满好奇心的8-120岁的 少年 。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的*进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而*美的数学(the best mathematics)则如文学 它将故事栩
《烧掉数学书》是一本全新概念的数学科普。这本书的一大特点是抛开传统晦涩的数学符号和讲述方式,另起炉灶,从零开始,用年轻人易于接受的语言阐释高深的数学知识和概念。这本书打破了数学教育界认为在讲授微积分之前必须花大量时间和精力学习微积分的严格化基础的惯例,从理解微积分本身的用途和方法着手,反过来再提出微积分基础严格化的问题,从而顺理成章地引出极限和逼近等概念。这种方法更符合人们的学习和认知规律,让人能自然而然地接受和理解这些抽象的概念和技巧的源流和必要性,从而为深入的学习打下好的基础。
《数学通俗演义》是一本以章回小说形式演绎的数学史通俗科普读物,全面介绍了数学的起源和发展,内容涵盖了古今中外数学史上的重大事件、重要人物以及各种数学原理的发现和发展,同时还深入浅出地解释了一些重要的数学概念和原理,让读者在了解数学发展史的同时,也能更好地理解相关概念和理论背景,对数学的基本知识有更深入的认识,有助于更好地掌握它们。 《数学通俗演义》涉及的数学发展史时间范围为从上古到20世纪初,内容涵盖了小学、初中和高中的大部分数学知识点,以及部分高等数学的内容。写作上尽量深入浅出,力争做到小学生能看大概,中学生能全部看懂,保证科学性的同时也保证可读性。通过讲述数学家的故事尤其是如何进行数学发现的故事,让读者更好地理解数学的发展逻辑和演变规律,这些故事不仅让数学史更加生动有趣,也
飞毛腿为什么追不上乌龟? 无穷世界里部分大于整体吗? 理发师到底给不给自己剪头发呢? 2为什么不是有理数? 从一个个问题中,科学家开始探索奇妙的数学世界 用于测量金字塔的高度,预测彗星轨迹,探索大脑结构、走进量子世界 数学,正是物理、化学、生物、天文等学科的基础,人类的每一次重大进步的背后都离不开数学。 本书通过讲述影响世界的40个经典数学问题,多角度展现了人类在探索过程中闪耀的智慧光芒,创造性梳理了数学的发展脉络,帮你发现一个妙趣横生、精彩绝伦的数学世界,让你学会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界。
本书是Z负盛名的世界科普经典著作之一,它曾引领千千万万的读者进入科学世界。许多人都是因为在十几岁的时候读到这本书,才首次真正领略了科学的奇迹和奥秘。作者以其幽默的笔调和高超的教学技巧,探讨了宏观世界和微观世界、数论、空间和时间的相对性、熵、基因、原子结构、核裂变和太阳系的起源等主题。无论你的科学知识水平如何,你都会从这本不同寻常的书中获得许多乐趣和激励。它是任何对科学世界充满好奇的人的书。
许多人在中学数学课堂上学习过 “微积分”。 微积分是用来计算“变化”的数学,在计算如位置的变化、速度的变化、股价的变化等多种变化时,微积分发挥着重要作用,甚至可以说微积分几乎是不可或缺的。 本书在第1章中,对微积分的精髓进行了精要讲解。在接下来的第2章中,追溯微积分诞生的时代背景及数学家的思考,探究复杂的微积分符号和计算方法。另外,还会介绍牛顿和莱布尼茨之间关于微积分发明权归属之争、牛顿的巨著《自然哲学的数学原理》,以及微积分之谜等有趣的话题。最后,第3章收录了微积分的计算问题和微分方程式等应用实例,可以从中切实感受到微积分的作用。
在这本引入入胜的科普经典中,著名英国数学家斯图尔特用清晰流畅、幽默风趣的语言阐明了群、集合、子集、拓扑、布尔代数等 新数学 的基本概念,他认为理解这些概念是把握数学真正本质的好途径。此外,作者还对函数、对称、公理学、计数、拓扑学、超空间、线性代数、实分析、概率论、计算机、现代数学的应用等主题作了发人深省的讨论。读者无需任何高等数学背景,只需对代数、几何和三角学略知一二,便可读懂此书的大部分内容。读罢此书,你会更清楚地理解现代数学家对图形、函数和公式的看法,以及 新数学 的基本思想如何有助于领会数学的本质。
在《x的奇幻之旅》中,*数学家、《纽约时报》专栏作者史蒂夫?斯托加茨,引领我们踏上一段领略伟大的数学思想的赏心悦目之旅。沿途中你会看到数学如何与文学、哲学、法律、医学、艺术、商业彼此交融,甚至流行文化也能以我们意想不到的方式和数学共舞。
你是擅长数学还是害怕数学呢?可能有很多人对数学持有这样的印象??“不知道在学校学到的数学有什么用”。在现代社会里,各种各样的数学工具非常丰富。本书对其中的“对数”和“向量”这样非常实用的工具进行介绍。 “对数”作为可以简化计算的工具在16世纪就已诞生,在没有电子计算机的时代,对数成为自然科学发展的基石。到今天,对数除了作为单纯的计算工具,还出现在现代科学的各种场合里,支持社会发展。“向量”是表述“同时具有大小和方向的量”的概念,在包含物理学在内的很多科学领域起到巨大作用。
法国数学家笛卡儿提出被称为现实中不存在的“想象中的数”。这就是高中数学中涉及的“虚数”概念。虚数有何奇妙之处呢?无论是正数还是负数,平方之后必然为正;而虚数则是“平方为负”,这样的数在哪里都找不到。为什么要学习虚数呢?这是因为在数学中虚数发挥着极其重要的作用,如果没有虚数,那数字的世界就不完整了。而且即使是对于解析微观世界的量子力学而言,虚数也是不可或缺的存在。如果没有虚数,甚至连1个电子的运动都无法正确得知。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而美的数学(the best mathematics)则如文学 它将故事栩栩
《数学与生活(修订版)》以生动有趣的文字,系统地介绍了从数的产生到微分方程的全部数学知识,包括初等数学和高等数学两方面内容之精华。这些知识是人们今后从事各种活动所必须的。书中为广大读者着想,避开了专用术语,力求结合日常逻辑来介绍数学。读来引人入胜,枯燥之感。从中不但可得益于数学,而且还可学到不少物理、化学、天文、地理等方面的知识。
数学作为重要的基础学科,是我们面向未来的重要工具和能力。但问题是,我们如何摆脱数学学习的枯燥甚至是畏难情绪,提升数学教育的质量,真正地享受数学,热爱数学,并愿意钻研数学。 《数学的力量》以诚挚的语言告诉我们,学好数学实际上是人类的天性,只是很多人都被埋没了。数学中蕴含着意义、美、探索、自由、真理、奋斗等各种优秀的品格,和我们个体的内在追求是高度契合的。我们每个人实际上都可以发现数学之美,感受数学之乐,重要的是通过正确的方式去唤醒它们。 这是一本契合时代的动人之作,希望每个人都可以从中看到不一样的数学,转变数学认知,重塑数学思维。
近来,被称为“数据科学家”的研究者备受关注,充分运用数据进行分析,变得越 来越重要。这种活用数据的基础便是“统计与概率”。 统计与概率,不仅对于研究者,对于生活在现代社会的所有人来说都是可以在现实 生活中发挥重要作用的知识。在日常生活中,正确解读数据,从而进行合理的判断,也 是依靠概率和统计的思考方法。 在本书中,以我们身边的话题作为案例,介绍以统计与概率为基础的重要数学方法, 并对于因人工智能的蓬勃发展而备受瞩目的“贝叶斯统计”,也介绍其思考方法与应用实 例。此外,本书还对概率论起源于 17 世纪欧洲的博彩问题,以及“统计大师”汉斯?罗 斯林博士的访谈、随机和随机数的深奥的问题等进行了介绍,希望与读者一同洞悉统计 与概率的本质。
21世纪的今天,我们生活的方方面面无时无刻不在被算法影响和塑造。它们帮我们选择最佳的行车路线,向我们推荐我们可能购买的商品,为我们识别语音和图像,甚至给单身人士匹配婚恋对象。越发强大的算法也在不断突破极限,无论是打败围棋世界冠军柯洁,借助大语言模型与人类会话,还是在200秒内完成超级计算机1万年才能完成的计算。 然而,算法并非新近才开始影响人类社会,人类受益于算法已经有数千年的历史。在《算法简史:从美索不达米亚到人工智能时代》中,以算法发展过程中的关键人物和经典算法为主线,作者克里斯 布利克利绘出了一幅近4 000年的算法发展简史:从镌刻在古巴比伦泥板上求2的平方根的算法,到刘徽和祖冲之父子对圆周率的精确计算;从查尔斯 巴贝奇和艾达 洛芙莱斯试图建造的机械数字通用计算机,到艾伦 图灵对算法的正式