《华为数据之道》 《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在优选170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细
阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
本书根据PL/SQL的新版本进行了全面更新,涵盖从基础语法、程序控制到最新的优化和调优增强等方面的知识,通过真实的实验、大量的示例讲解了PL/SQL技能,是一本逐步分解的、详尽的PL/SQL编程教程。读者可以按照本书的步骤一步一步地完成每一个关键任务,掌握Oracle 21c PL/SQL编程技术,深度探索PL/SQL编程技术及最佳实践。本书既适合新手数据库开发人员和DBA阅读,也适合有一定经验的从业人员阅读。
这是一本讲解在数据要素大背景下,企业如何将数据资源开发成数据产品,进而通过数据产品实现数据资产化和资本化的著作,为企业释放数据价值提供了科学的方法论和国内领先的实践方案。这本书由全球数据资产理事会(DAC)组织编写,融合了国内数据资产管理领域多家企业的10位专家的研究成果和实战经验,得到了湖南数据产业集团、广州数据集团、深圳数据交易所、浙江大数据交易中心、华为、平安、安永、毕马威、德勤、普华永道、浙江大学等企业、机构和高校等近20位高层领导、技术专家和学者的高度评价和一致推荐。从概念到方法,从理论到实践,从产业政策到行业解决方案,本书将为读者构建全面的数据产品知识体系,核心内容如下:(1)国家和地方出台的数据资产相关政策及其解读,为数据资产实践提供法律准绳;(2)详细阐释数据从原始数据
本书以TiDB数据库为基础介绍分布式数据库的运行原理、性能优化和应用场景架构设计。首先,剖析分布式数据库的运行原理与架构;然后,阐述分布式数据库TiDB在表与索引的设计优化、SQL优化、系统级优化方面的方法论,通过融入多个有代表性的案例,帮助读者将方法论对应到生产实践中;最后,梳理场景选型和架构设计过程中读者应该掌握的主要知识点,并对一些分布式数据库的优势场景进行了详细介绍。 本书适合希望了解分布式数据库原理,学习TiDB数据库的开发工程师、数据库管理员和架构师阅读,也可以作为高等学校教师或学生学习分布式数据库的参考教材。
当前,数据驱动的理念已渗透到各个领域,数据科学和人工智能技术在制造业、金融、教育等多个行业中得到了广泛应用。Python作为一种编程语言,已成为数据科学和人工智能领域的事实标准,它丰富的生态系统进一步增强了它在这些领域中的重要性。然而,随着数据量的不断增长,如何利用Python加速数据科学处理,并将它扩展到集群上的并行计算,已成为数据科学家面临的重要挑战。本书详细介绍了4种数据科学工具:Dask、Ray、Xorbits和mpi4py,这些工具可以帮助数据工程师和科学家处理更大规模的数据集、训练更复杂的模型,并更高效地进行机器学习模型的迭代和部署。本书面向具备一定数据科学基础的数据工程师、数据科学家或领域专家,同时也适合大学生和研究生作为进入高性能数据科学领域的入门读物。
本书详细介绍面向静态数据集、增量数据集和数据流的高效用模式挖掘的理论和方法。本书内容共6章,第1章和第2章介绍高效用模式挖掘的相关知识。第3章介绍面向静态数据集的包含正、负效用的两类精简高效用模式挖掘方法的研究与实现过程。第4章介绍针对增量数据集的挖掘高效用模式全集和精简集合的研究。第5章介绍面向数据流的精简高效用模式挖掘方法的研究与实现过程。第6章给出三个高效用模式挖掘的应用案例。第3~5章有方法的实验证明,供读者更好地了解本书内容。 本书可供大数据挖掘相关专业研究生参阅,也可以作为大数据挖掘研究和应用开发人员的参考书。
阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
在大数据时代,我们并不缺少数据,缺少的是利用数据分析的思维和工具去解决实际问题的能力。数据化分析是运用恰当的方法和工具,对数据进行科学、有效的分析,从而提出有理有据、具有可操作性的建议,以解决现实中的难题。本书主要介绍了数据分析的9 种思维、7 种工具、学习方法、基本方法、展现方法、制作数据分析报告的方法,以及数据分析的思维模型。本书适合所有对数据分析感兴趣的读者阅读,特别是在工作或生活中需要经常跟数据接触的人,如数据分析师、产品经理、运营人员、管理人员、财务人员等。
本书深入探讨了大数据技术的核心概念和实际应用。从大数据的基础架构Hadoop开始,逐步解析了分布式协调服务Zookeeper、数据仓库Hive、面向列的数据库HBase等关键技术。此外,还介绍了数据迁移工具Sqoop、数据采集工具Flume、发布订阅消息系统Kafka等实用工具。本书还深入讲解了数据处理分析引擎Spark、全文搜索引擎Elasticsearch及分布式处理引擎Flink的工作原理和应用实例。最后,通过电商推荐系统实战和Flink实现电商用户行为分析两个案例,展示了大数据技术在实际业务中的应用。本书附带全书实例源代码、电子版本教程(下载方式见封底),以及可扫码观看的长达13个小时的部分实例操作视频,帮助读者更深入了解大数据技术的具体内容,非常适合对大数据技术感兴趣的读者,尤其是想要深入了解大数据技术原理和应用的开发者和管理者阅读。
本书是一本全面关注工业企业数据治理方面的工具书,主要内容分为概述篇、体系篇、工具篇、实施篇及案例篇。其中概述篇主要介绍工业企业数据治理的基础概念、主流数据治理标准及框架、数据治理的发展趋势等;体系篇主要介绍数据管控、数据战略、数据架构、主数据管理等的基本原理与管理体系;工具篇主要介绍主数据管理工具、数据模型管理工具、数据资产运营工具等;实施篇主要介绍具体实施策略及路径选择、顶层架构规划与设计、数据资产运营实施等;案例篇主要介绍电力、能源化工、钢铁、制造、战略投资等行业的数据治理案例,为读者提供专业、丰富、可信的数据治理实施范例。 本书是工业大数据应用技术国家工程实验室多年潜心研究的重要科研成果的总结和凝聚,既具有理论高度,也具备面向中国工业企业的可实操性。参与本书编著的作者均
本书系统地介绍向量数据库的原理、技术实现及其应用,重点分析传统数据库在处理高维向量数据时的局限性,并提供相应的解决方案。本书分为4个部分,共13章,内容涵盖从理论基础到技术实践的多个方面,详细讨论高维向量表示中的信息丢失、嵌入空间误差和维度诅咒等问题,结合FAISS和Milvus等主流开源工具,深入剖析向量数据库的索引机制、搜索算法和优化策略。通过实际案例,展示向量数据库在推荐系统、行为分析、智能诊断、语义搜索等领域的应用,并特别强调企业级语义搜索系统的开发与部署经验。 本书不仅提供深度的理论指导,还通过丰富的案例帮助读者掌握如何构建高效的向量搜索引擎,适合从事搜索引擎与推荐系统开发的工程师,数据科学、人工智能及相关领域的从业者、研究人员,以及对向量数据库与相似性搜索感兴趣的读者,也可作为培训
本书全面深入地探讨了有效数据管理面临的挑战、复杂性及其巨大价值;定义了一套数据管理的指导原则,阐述了如何将这些原则应用于不同的数据管理功能领域;提供了企业级数据管理实践的功能框架,涵盖广泛采用的实践、方法、技术、职能、角色、交付成果和衡量标准;确立了数据管理的通用术语体系,成为数据管理专业人员很好实践的基础。本书为数据管理和IT专业人员、企业高管、知识工作者、教育者和相关研究人员提供了数据管理知识体系框架,帮助他们更好地管理数据、优化数字基础设施。
Microsoft Excel 365功能卓越,全球无数企业和个人用户使用Excel365来收集、理解和解读数据。Excel办公系列书籍在广大读者中引起热烈反响,一直畅销不衰。本书对上一版做了全面细致的更新,娓娓道来,指引你创建和使用电子表格,编写公式和自定义函数,可视化数据,以及基于组织的数据创建报表和预测。本书既适合初级用户,也适合高级用户,将帮助你解锁数据的价值和潜力。
本书主要介绍从高维数据中感知、处理、分析和学习低维结构的基本数学原理和高效计算方法,系统地归纳了建模高维空间中低维结构的数学原理,梳理了处理高维数据模型的可扩展高效计算方法,阐明了如何结合领域具体知识或考虑其他非理想因素来正确建模并成功解决真实世界中的应用问题。本书包括基本原理、计算方法和真实应用三个部分:基本原理部分系统地介绍稀疏、低秩和一般低维模型的基本性质和理论结果,计算方法部分介绍解决凸优化和非凸优化问题的有效算法,真实应用部分通过实例演示利用前两部分的知识改进高维数据处理和分析问题的解决方案。本书适合作为计算机科学、数据科学和电气工程专业的高年级本科生和研究生的教材,也适合学习稀疏性、低维结构和高维数据课程的学生参考。
大数据时代,Oracle12c为云计算而改变。《名师讲坛 Oracle开发实战经典》以Oracle11g、12c版本为基础,通过丰富的实例、通俗易懂的语言、简洁明快的图示、极为详尽的视频,讲述了数据库开发的主要内容。全书分为3个部分,第1部分:Oracle开发前奏,主要包括数据库系统概述、Oracle的安装与基本使用;第2部分:SQL基础语法,主要内容有简单查询、限定查询与排序显示、单行函数、多表查询、分组统计查询、子查询、更新及事务处理、替代变量、表的创建与管理、完整性约束、其他数据库对象、用户权限及角色管理、数据库设计;第3部分:数据库编程,主要内容有PL/SQL编程基础、集合、游标、子程序、包、触发器、动态SQL、面向对象编程。。《名师讲坛 Oracle开发实战经典》还有如下特点: 1.视频极为详尽:视频长达45小时,共126讲,力求将Oracle开发知识一网打
本书紧密结合当前边缘计算领域近期新的发展趋势与研究成果,本着务实具体、详略得当、启发创新的指导思想,系统、全面地介绍了边缘计算的原理与应用,包括基本概念、架构原理、核心技术、主要研究方向与挑战,以及多个应用的近期新研究进展。撰写本书时最艰难的是选择从哪些应用视角来讲述边缘计算。最终,我们选择了计算卸载、服务部署、视频分析、模型推断、联邦学习等当下应用最为广泛的若干应用进行了阐述。
本书通过通俗易懂的语言、丰富多彩的实例,详细介绍了使用Python进行数据分析应该掌握的各方面技术。本书内容包括Python基础,用NumPy进行数据计算,用Pandas进行数据分析,用SciPy进行数据分析,用Scikit-learn进行数据分析、数据预处理、数据可视化,用Matplotlib进行可视化等内容。本书示例丰富,所有涉及的程序代码都给出了详细的注释,读者可以轻松学习,快速提升开发技能。除此之外,本书还附配了教学视频、PPT课件和全书示例源码。 本书适合数据分析的初学者、职场人士和所有对数据分析感兴趣的人员阅读,也适合作为大中专院校相关专业的教学用书。