......
《数据挖掘:实用机器学习工具与技术(原书第3版)》是机器学习和数据挖掘领域的经典畅销教材,被众多国外名校选为教材。书中详细介绍用于数据挖掘领域的机器学习技术和工具以及实践方法,并且提供了一个公开的数据挖掘工作平台Weka。本书主要内容包括:数据输入/输出、知识表示、数据挖掘技术(决策树、关联规则、基于实例的学习、线性模型、聚类、多实例学习等)以及在实践中的运用。本版对上一版内容进行了全面更新,以反映自第2版出版以来数据挖掘领域的技术变革和新方法,包括数据转换、集成学习、大规模数据集、多实例学习等,以及新版的Weka机器学习软件。
《Web数据挖掘》旨在讲述这些任务以及它们的核心挖掘算法;尽可能涵盖每个话题的广泛内容,给出足够多的细节,以便读者无须借助额外的阅读,即可获得相对完整的关于算法和技术的知识。其中结构化数据的抽取、信息整合、观点挖掘和Web使用挖掘等4章是《Web数据挖掘》的特色,这些内容在已有书籍中没有提及,但它们在Web数据挖掘中却占有非常重要的地位。当然,传统的Web挖掘主题,如搜索、页面爬取和资源探索以及链接分析在书中也作了详细描述。 《Web数据挖掘》尽管题为“Web数据挖掘”,却依然涵盖了数据挖掘和信息检索的核心主题;因为Web挖掘大量使用了它们的算法和技术。数据挖掘部分主要由关联规则和序列模式、监督学习(分类)、无监督学习(聚类)这三大最重要的数据挖掘任务,以及半监督学习这个相对深入的主题组成。而信息检
本书主要包括绪论、线性表、栈和队列、串、数组、树形结构、图、内部排序、查找。教材中对各类数据结构的分析按照“逻辑结构—存储结构—基本运算的实现—时空性分析—实例”的顺序进行讲述,结构规范,条理清晰。书
......
......
本书是根据“全国自学考试(计算机及应用专业专科)专试大纲”以及历年考题编写的。本书分4部分:第1部分是笔试应度指南;第2部分是笔试题解;第3部分是模拟试卷及参考答案;后是附录,包括考试大纲和2002年下半年试卷。 本书紧扣考试大纲,内容取舍得当,叙述通俗易懂,附朋大量与考试题型类似的习题,并附有答案,以检查读者对考点的掌握程度。 本收适用于准备参加全国自学考试(计算机及庆用专业 专科)的考生。
数据仓库与数据挖掘是与计算机、信息类等相关专业的核心课程。张兴会等编著的《数据仓库与数据挖掘工程实例》采用提出问题、分析问题、解决问题的思路,通过工程实例介绍了SQL Server 2005和 Weka软件的使用方法以及联机分析处理技术、关联规则方法、决策树方法、贝叶斯方法、人工神经网络方法、聚类分析方法、线性回归方法等数据仓库与数据挖掘技术。 本书结构严谨,条理清晰,语言浅显易懂,循序渐进地表达了知识内容;坚持理论与实际相结合,知识理论与具体实现方法相结合,使技术实现具体化、生动化、可操作化;工程实例的实现过程建立在 SQLServer2005和Weka软件的基础上,以帮助读者在学习后达到学以致用的效果。本书可以和《数据仓库与数据挖掘技术》教材配合使用,旨在帮助读者在学习数据仓库与数据挖掘理论知识的基础上,通过学习工
O’Reilly Media通过图书、杂志、在线服务、调查研究和会议等方式传播创新知识。自1978年开始,O’Reilly一直都是前沿发展的见证者和推动者。超级极客们正在开创着未来,而我们关注真正重要的技术趋势——通过放大那些“细微的信号”来刺激社会对新科技的应用。作为技术社区中活跃的参与者,O’Reilly的发展充满了对创新的倡导、创造和发扬光大。 O’Reilly为软件开发人员带来革命性的“动物书”;创建第一个商业网站(GNN);组织了影响深远的开放源代码峰会,以至于开源软件运动以此命名;创立了Make杂志,从而成为DIY革命的主要先锋;公司一如既往地通过多种形式缔结信息与人的纽带。O’Reilly的会议和峰会集聚了众多超级极客和高瞻远瞩的商业领袖,共同描绘出开创新产业的革命性思想。作为技术人士获取信息的选择,O’Reilly现在还将先锋专家的
数据采集和存储技术的进步导致了数据规模的日益增加,数据是一种宝贵的信息资源,但这种资源同矿藏一样,只有通过管理、分析、挖掘、提炼等操作,才能使潜在的资源变成可用的财富。 本书系统地介绍了数据挖掘技术的产生、发展、应用及相关原理和算法,其主要内容包括:数据挖掘基本知识、数据挖掘处理流程、数据仓库和联机分析处理、关联规则发现方法、序列模式挖掘方法、决策树分类方法、贝叶斯分类法、各种聚类方法、Web挖掘以及分类方法在医学图像中的应用。本书包含了作者多年来在数据挖掘中的研究成果。 本书可作为计算机专业、自动化专业、生物医学专业等高年级本科生与研究生课程的教材,也可作为需要了解数据挖掘有关方法与技术的研究、设计和开发人员的参考书。
《大数据时代小数据分析》是一本大数据时代下进行小数据分析的入门级教材,通过数据分析的知识点,将各类分析工具进行串联和对比,例如:在进行线性规划的时候可以选择使用Excel或LINGO或Crystal Ball。工具的应用难易结合,让读者循序渐进地学习相关工具。JMP和Mintab用来分析数据,分析的结果使用Excel、LINGO、Crystal Ball来建立数据模型,最后使用Xcelsius来动态展示数据分析的结果。《大数据时代小数据分析》中以两个人的对话为叙述方式,场景描写多,容易进入学习状态,完全是用生动的故事和实用的案例尽可能地贴近生活和工作,让数据分析生动有趣,基本上有高中数学知识就可以理解线性规划等数据分析内容。 《大数据时代小数据分析》不仅介绍Excel而且介绍使用其他工具软件进行数据分析,可用来拓展互联网公司、传统企业、电商企业、管理咨
《不确定信息的处理与知识挖掘》在作者汪凌对粗糙集相关理论进行研究及应用的基础上,系统论述了不确定信息的处理与知识挖掘理论、方法体系,囊括了包含作者近期成果在内的一些 模型、算法和实例。主要内容包括:基于广义决策系统分割点区分度的连续属性离散化方法、基于改进粒子群优化的连续属性离散化方法、基于相对分辨矩阵和信息熵的属性约简算法、基于属性区分频度的约简改进算法、基于全局寻优的完备信息系统知识获取算法、基于相容矩阵计算的不完备信息系统知识获取算法, 介绍了不确定信息的处理在城市交通领域中的应用研究。 本书适合高校应用数学、信息科学、系统工程以及管理工程等专业的高年级本科生和研究生阅读,同时对有关领域的研究人员和工程技术人员也具有重要的参考价值。
本书依托认知心理学、教育测量学等理论,提出了以认知诊断为核心的分析评估方法,该分析评估方法是教育与数据科学跨学科研究与实践的成果。同时,本书聚焦面向学习任务的教育场景,深入探讨了认知诊断相关方法,以支撑教育训练过程的分析与评估。 本书共分6章,章总体概述了本书的研究内容与主要贡献;第2章阐述了本书相关研究工作所需要的基础知识和现有模型的研究概况;第3章介绍了面向学习任务的知识关联建模,聚焦知识关联关系的量化建模方法,证明了知识关联关系对于认知诊断的影响;第4章利用知识关联关系信息构建了面向认知诊断的知识聚合方法;第5章提出了融合知识关联关系的认知诊断深度模型,实现了认知诊断模型自身参数以及知识权重等参数的统一学习;第6章是总结与展望。 本书可以为高等院校计算机专业、教育技术专业本科生
本书是数据库的实验教材,从测试DBMS边界的角度出发,通过案例现象引导读者主动思考现象的成因,对SQL的基本知识,数据库系统的完整性控制、安全性控制、并发控制、数据备份与恢复、性能检测、索引进行实验内容组织。每个实验还有习题及其参考答案。 通过本书附录可了解数据库的逻辑结构,搭建实验环境,并将数据库结构和数据直接导入到计算机中,相关数据和资料可在清华大学出版社网站下载。
本书由综述,创建数据仓库,数据仓库环境中的决策支持和用于决策支持的数据仓库产品四部分组成。本书可作为从事数据仓库决策支持开发研究人员的参考书,也可作为大学本科或研究生的选修课教材。