本书是一本基于 Python 实现全部例题计算的统计学教材,书中例题解答均给出了详细的实现代码和结果。全书共 11 章,第1章和第2章介绍数据、Python 的下载与安装、Python的数据类型和基本操作、Python 绘图基础等。第3章和第4章介绍数据的描述性分析方法,包括数据可视化和描述统计量。第5~7章介绍数据的推断性分析方法,包括概率分布、参数估计和假设检验。第8~11章介绍实际中常用的一些统计方法,包括类别变量分析、方差分析、回归分析、时间序列分析等。 本书可作为高等院校各专业开设统计学课程的教材,也可作为数据分析工作者、Python 数据分析和可视化爱好者的参考书。
一本书如果没有作者自己的观点,而只是知识的堆叠,那么这类书是没有太大价值的。尤其在当前网络发达的时代,几乎任何概念和知识点都可以从网络上查到。但是有一点你很难查到,那就是统计分析的思路和观点。比如,你可以很容易地在网上查到什么是线性回归,但你却查不到怎么 做 线性回归分析,在你遇到实际数据时仍然不知道如何分析。在《白话统计》中,你可以获得这些思路和观点。尽管这些观点未必是所有人都认可的,但根据笔者多年的分析经验,它们在实践中通常是奏效的。《白话统计》凝结了作者十多年来对统计分析的理解,对各种方法的介绍采用全新的理念和思路,不再是介绍方法本身,而是试图将各种方法之间的联系阐述清楚;不再是介绍方法如何计算出结果,而是尽量说明方法背后的思想。当然,本书同时提供了如何实现结果的软件(
数据分析是现在不仅在互联网行业同时也在基础行业中必不可缺的运营手段,是业务提升效率、增强收益的有效方法。 本书的前8个章节精选提炼了多种数据分析中重要方法,包括ROI分析、数据标签和评分、用户生命周期、因果推断、可解释模型、PSM理论、ABtest、时序分析等,并通过更清晰、简单的方式向读者全方位的展示数据分析在以下诸多原理上的阐释,并且针对每种方法都提供了充足的生活和业务中的前沿案例作为辅助讲解,帮助读者更好的理解数据分析在传统行业、互联网行业及各类新兴行业的实际应用,同时也能更快的运用在实际工作和生活中,所以通过阅读前8个章节,读者可以系统的学习数据分析的理知识,拥有数据化思维,为读者能够在数据分析行业中不断深耕打下良好的理论基础并将数据分析能力逐步应用于实际的工作和生活中,成为一名合格的
本书介绍了柴油发电机组的分类、组成和工作原理,分析了柴油发电机组的功率标定和技术指标, 重点讨论了不同性质负载对柴油发电机组带载能力的影响,详细介绍了柴油发电机组供电方案的电源架 构和运行方式以及柴油发电机组的运维保养方法。此外,还介绍了机房安装的柴油发电机组和集装箱式 柴油发电机组的设计、安装的相关知识。 本书力求理论性和实践性相结合,书中所列的柴油发电机系统的供电方案及运维保养方法对当前主 流的数据中心柴油发电机系统普遍适用。本书是数据中心柴油发电机系统运维工作流程的指导性教材, 相信阅读本书一定会对数据中心柴油发电机系统运维管理从业人员大有裨益。
本书系统讲述数据仓库的基本概念、基本原理以及建立数据仓库的方法和过程。主要内容包括:决策支持系统的发展、数据仓库环境结构、数据仓库设计、数据仓库粒度划分、数据仓库技术、分布式数据仓库、ElS系统和数据仓库的关系,外部和非结构化数据与数据仓库的关系、数据装载问题、数据仓库与Web、ERP与数据仓库以及数据仓库设计的复查要目。 本书是数据仓库之父撰写的关于数据仓库的 权威著作,既可作为相关专业的研究生教材,也是数据仓库的研究、开发和管理人员的指南。
数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。而数据模型是构建应用系统的核心,是尽可能精准地表示业务运转的概念性框架。本书通过平实的语言,对数据模型及建模过程进行了深入浅出的介绍。全书内容分为5个部分,对数据建模简介、数据模型要素,概念、逻辑和物理数据模型、数据模型质量以及数据建模的进阶内容等方面进行讲解,全面细致地为读者解答与数据建模相关的知识点和疑问。除此之外,本书的zui后还对各类专业术语进行了细致的解释,方便读者参考。本书是一本经典的数据建模指南,非常适合对数据建模感兴趣的读者以及从事数据科学等相关工作的专业人士参考阅读。
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
本书介绍了数据链的基本概念、发展历程和趋势,重点分析了Link-4、Link-11、Link-16和Link-22数据链的系统组成、工作模式、技术特点等内容,并以Link-16数据链为重点,全面阐述了该数据链的信道共享机制、时间同步技术、传输消息类型、封装结构、信号波形等内容,给出了多网、导航、中继、距离扩展等功能实现方法;以数据链关键技术为主线,详细论述了数据链的消息格式、信息传输、网络协议、通信安全等方面相关知识,剖析了数据链的本质。
在数据湖仓的所有新增要素中,排名的就是可以利于数据分析和机器学习所用的分析基础设施。分析基础设施包括一众大家广为熟悉的东西,当然也包括一些可能对大家还有些陌生或略带新鲜感的概念。比如包括:元数据、数据血缘、 数据体量的度量 、数据创建的历史记录、数据转换描述。 数据湖仓的第二个新增要素,是识别和使用通用连接器。通用连接器允许合并和比较所有不同来源的数据。如果没有通用连接器,就很难(实际上是几乎不可能)将数据湖仓中的不同数据关联起来。但有了这个中西,就可以关联任何类型的数据。 使用数据湖仓,就有可能实现以往任何其它方式都不可行或不可能实现的某种程度的数据分析和机器学习。 但与其它架构一样,我们需要理解数据湖仓的架构以及它的能力,以便于我们基于这种架构创建数据分析蓝图和开展数据分析规
本书以Oracle 19c for Windows10为实践平台,以学生-课程数据库和员工-部门数据库为实践案例,重点介绍数据库的基本原理、设计与实现方法,对传统的数据库理论进行精炼,保留核心与实用部分,采用案例教学的方式撰写,强调知识的层次性和技能培养的渐进性。全书共分为7章,分别介绍数据库系统绪论、关系运算理论、关系数据库标准语言SQL、数据库设计与规范化理论、数据库安全性与完整性、数据库备份与恢复、数据库并发控制等。本书提供PowerPoint电子教案、实验练习参考答案,课后习题参考答案、模拟试卷参考答案、核心知识点微视频讲解,方便教师教学和学生自学自测。本书可作为高等院校计算机及相关专业的教学用书,也可以作为从事相关专业的工程技术人员和科研人员的参考资料。
MySQL作为一款开源的关系型数据库管理系统,有着强大的功能和广泛的应用领域,对促进信息化建设、推动数字经济发展起着重要的作用。本书全面介绍了MySQL数据库的技术原理、应用场景和开发实践,帮助读者掌握MySQL数据库的基本概念和高级特性,提升数据库设计与开发的能力。全书共11章,从数据库基础知识讲起,包括数据库概述、关系型数据库设计原则、SQL语言基础等内容,逐步深入介绍MySQL数据库的高级特性和应用技巧,如查询优化、事务管理、索引优化,延伸学习在数字经济发展情境下,数据库的发展趋势和应用等内容。此外,本书最后一章还通过两个综合应用项目将理论知识与实际应用结合在一起。 《MySQL数据库管理与应用》内容深入浅出,理论结合实际,可作为高等院校计算机、信息技术及相关专业数据库课程的教材,也可作为数据库初学者、软件
本书重点介绍Amos、Mplus 和SmartPLS 统计软件里的结构方程分析方法。包括结构方程模型路径图的构建与数据的收集,结构方程模型的识别、分析结果评价及修正,反映型指标、形成型指标与二阶段分析,调节效应分析、中介效应分析、多群体差异分析与潜在平均分析,以及结构方程模型高级的分析方法即贝叶斯检验、混合回归分析、潜在成长模型、MTMM 模型等内容。没有复杂的理论推导,而是结合作者自身的教学与科研实践,以数据为依托,深入浅出,使读者能在短时间内理解并掌握结构方程模型分析方法,进而应用到自己的研究实践中。
本书主要介绍了数据可视化的基础知识、可视化工具的入门和应用、使用Python流行的库创建美观的数据可视化效果,并总结了了7大类40种不同的可视化图形,从基本信息、构成与视觉通道、适用数据、使用场景、注意事项、变体等多方面详细介绍了每种可视化图形的使用权方法,可作为常用可视化图形的使用手册。本书还提供了6个贴近大学生学习生活的可视化案例,为读者自由灵活应用可视化参考提供了有力的参考。 本书可作为高等院校数据科学与大数据技术、统计学及其相关专业的本科课程教材,也可供有一定实践经验的软件开发人员、管理人员作为自学和参考用书。
本书从新时代商业环境出发,紧随市场热点,如分布式自治组织(distributed autonomous organization,DAO)、非同质化通证(non-fungible token,NFT)、元宇宙、Web 3.0 、资产 数字化、反垄断、要素市场化配置等,以企业数字化转型为核心,以区块链等数字化技术 为基本点,以场景为基本面,勾勒了数字化时代分布式商业演化的新趋势,以及其对企业 经营管理的影响,提出了数字化时代企业数字化转型的新策略和分布式经营管理的低成 本、高效率发展方案。 本书全面分析了分布式商业产生的背景及其本质内涵,认为分布式商业是未来商业演 化的必然趋势。分布式商业生态战略不但是未来企业生存的基本战略,而且是元宇宙商业 生态建设的底层逻辑,并将Web 3.0 、DAO、NFT、元宇宙等新兴事物融入分布式商业生 态体系中,深度解读了数字化时代的新商业逻辑和战略思维。同
随着信息化建设的推进,电子数据资源成为企事业单位的重要基础设施。云计算因能够实现计算和存储资源按需分配、快速部署等而迅猛发展。越来越多的团体或个人倾向于将数据迁移至云存储系统,基于云的存储和计算应用已经深入金融、工业、交通、医疗健康等传统行业。安全、高效地提供云服务对于相关技术人员来说既是机遇也是挑战。本书从云数据安全存储这一视角切入,重点解决云数据去重技术中面临的安全和效率问题,提出并系统地讲解了一系列适用于抗侧信道攻击的云数据隐私保护去重技术。本书共9章: 第1章介绍了云数据去重技术的基础知识和国内外研究现状;第2、3章介绍了一些基于上传流量混淆的去重技术;第4~7章介绍了基于响应值混淆的去重技术;第8、9章介绍了基于广义去重的云数据安全存储技术。 本书内容丰富,算法翔实,实用性强,
在数字化浪潮中,大数据技术无处不在,包括互联网、体育、工业、医疗、交通等在内的社会各行各业,都融入了大数据的印迹,大数据对人类的社会生产和生活产生了重大而深远的影响。一早醒来,多篇你感兴趣的推送文章早已占领手机屏幕;走在路上,智能手环实时监测着你的健康信息;想点外卖,小程序优先推荐最符合你口味的商家;骑车出行,导航系统会提供实时路况和最优路线避开拥堵;晚上回家,收到工厂根据你的身材比例剪裁制作的个性化服装。这些现象的背后,其实都和大数据息息相关。大数据技术正在不断与人类生产生活进行交汇与融合,并潜移默化地改变着世界的运作模式。本教材将从大数据的基本概念讲起,追溯大数据发展历程,并围绕大家身边的大数据应用,包含大数据在互联网、体育、工业、医疗、交通等方面的应用,以及大数据共享
本书紧密围绕商业运作的需要来强调数据在经营活动中的实践应用,采用项目驱动方式,通过实训为指导来强化数据库相关知识点的深入学习。全书始终围绕网络书店销售管理系统为例子,通过共9章内容系统展示了从系统应用需求分析开始到数据库设计、数据库实现、网络数据库开发、数据库管理程序开发等一系列以满足商业需求为发端的、以数据库开发应用为线索的相关工作。这种一以贯之的学习方式提高了学习的成就感与目标性,有助于提高对于新管理实践和新技术发展的理解和掌握。
Elasticsearch是一款高性能的文档数据库,广泛应用于分布式搜索和分析引擎等相关领域,本书首先介绍了数据建模的通用设计原理,然后针对Elasticsearch 介绍了文档数据库建模的特点和要求,例如和设计模式有关的实现、注意事项,以及实践过程中的注意点等。 本书的两位作者,一位是资深的Elasticsearch 专家,一位是建模领域的大师,联合为读者呈现了这本著作。如果你是一名希望扩展Elasticsearch 建模技能的读者,或者是一名了解Elasticsearch 但需要提高模式设计技能的从业人员,推荐阅读本书。
本书介绍了数据工程的基本概念和理论基础,围绕数据资源建设的规划和管理问题,介绍数据资源规划和管理的概念、特征、作用和功能,系统介绍了数据资源规划理论的发展过程、核心思想基础、主流方法体系和具体实施步骤,以及数据资源管理涉及的治理、质量、集成等理论知识、支撑平台、关键技术和主流工具。本书内容划分为数据工程基础篇、数据资源规划篇、数据资源管理篇三个部分,其中数据工程基础篇涵盖数据工程概述、数据标准、数据模型等内容,数据资源规划篇涵盖数据资源规划理论、规划方法、需求分析、模型构建、实践与工具等内容,数据资源管理篇涵盖数据治理、数据质量管理、数据集成、数据中台等内容。 本书既可以作为高等院校信息管理与信息系统、信息资源管理、大数据工程以及计算机信息管理等专业本科生的教材,还
本书结合现代IT技术、地理信息系统软件新技术、云计算、大数据、物联网等先进技术,详细介绍时空大数据概念与发展,基于云环境的时空大数据平台体系T-C-V软件结构和组成,重点阐述时空大数据中心、时空信息云服务中心和云应用集成管理中心三大部件,*后以全空间一张图平台为例,介绍该平台的实践情况。
本书由浅入深地阐述了时序大数据平台TDengine的核心原理与实战案例。首先,本书为读者提供了时序数据的基础知识和TDengine的核心特性概览,包括数据模型、数据写入、数据查询、数据订阅和流计算等;其次,详细介绍了TDengine的日常运维管理,包括安装部署、资源规划、图形化管理、数据安全等关键内容;然后,深入讲解了如何利用TDengine进行应用开发,涵盖多种编程语言的连接器使用、订阅数据,以及自定义函数的开发等高级功能;接下来,为数据库研发爱好者揭秘TDengine的内核设计,从分布式架构到存储引擎、查询引擎、数据订阅,再到流计算引擎的详细阐述;最后,通过分析典型应用场景案例,展示TDengine如何在实际业务中发挥作用。 本书架构清晰,内容丰富,理论与实践相结合,适合作为需要使用TDengine进行大数据处理的开发者、架构师和