本书诚实但又不失风趣地记录了作为人类学家的作者在非洲喀麦隆多瓦悠人村落两次进行田野工作的经历,将人类学家如何克服乏味、灾难、生病与敌意的真实田野生活拍案叫绝地呈现在读者面前。不同于一般的人类学研究报告,这是一部令人捧腹不止的人类学笔记,透过幽默的笔调,读者看到了人类学者如何与研究对象进行互动,在互动中如何调整他的学术成见,以及田野工作上的琐事如何影响后来研究结果、研究的盲点与反思。因此不管是严肃的读者、无聊地只想打发时间或者是向往非洲原始部落的异国情调而蠢蠢欲动的旅人,巴利这本书*是一个有趣的选择。
基于定域性和实在性为代表的常识观念,我们会认为,无论我们观察与否,物体有其自身属性,而且对其中一个的观察不会影响到另一个。但是量子纠缠这个概念打破了这一常识。在本书中,作者以轻松幽默的笔调,借助丰富有趣的假想实验案例简化了一些经典研究对量子纠缠问题的探讨,涉及诸如定域实在论、贝尔不等式、偏振、时间膨胀等概念,将物理学家为理解量子纠缠而提出的诸种假说展现在读者面前,从而帮助非专业读者一窥理论量子物理之门径。
《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的 、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。
《炼金术的秘密》是研究炼金术史的*权威劳伦斯 普林西比的*著作。它学术性与普及性兼备,甫一出版便赢得了广泛的国际赞誉。该书考察了炼金术从希腊化时期至今的发展与演变,揭示了炼金术在科学以及文学、美术、戏剧和宗教等人类文化中的重要地位。作者在自己的实验室里重现了许多著名配方,使读者能够近距离接触炼金术的实际工作,堪称了解炼金术的*读本。
本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也可
《物理如此简单:力学篇》是适合全学段中学生进行严肃阅读的物理学科普读物,具有极高的科普及学习价值。全书以生活中 简单的直线运动 开篇,引领你科学评判龟兔赛跑这一经典问题;以 无处不在的力 引领你认识一个真实的、充满相互作用的世界。在书中遨游,你会理解 坐地日行八万里 的真谛,你会参透足球运动员一脚踢出的 美丽香蕉球 中蕴藏的空气动力学原理。《物理如此简单:力学篇》引领你的研究从直线运动到生活中形形色色的曲线运动;引领你的思绪从地面延伸到浩瀚的宇宙星空。宇宙的中心在哪里?跑多快可以溜出太阳系?我们为什么要去火星?你所关注的这些科学问题,都会在阅读本书的过程中得到一些有意义的启示。
本书包含十年高考数学试卷中的典型数学思想方法研究与十年高考数学试卷中的典型题的具体解题方法研究两章和三个附录,内容包括数形结合思想方法、分类与整合思想方法、化归与转化思想方法等. 本书可供高中学生复习备考时使用,也可作为高中数学教师教学的参考资料.
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也
《费曼讲物理:相对论》也是从著名的费曼《物理学讲义》节选的六节有关相对论的物理课。即使是相对论的创立者爱因斯坦本人,对这个理论所创造出来的奇迹、这个理论的作用以及它的基本概念,也无法做出像费曼这样的解释。费曼的讲授不追求数学上的严格,也不落实于具体的应用,而是通过引人入胜的叙述,运用丰富而生动的例证,以及深刻而精辟的议论,透彻地讲解各种物理现象的本质和规律。
本书费曼对QED 做出了经典的颇具权威性的讲解。他运用日常语言、空间的意念、具形的想像和他著名的费曼图,而不是高深的数学,就QED的实际内容及其精神向外行读者进行了清楚明白而富于幽默的传授。徐一鸿的新序言将费曼的这本书和他对QED所做的创造性贡献放在历史发展的境遇来考量,并进一步突出了费曼独特的富于感染力和启发性的风格。
《挑战思维极限:勾股定理的365种证明》主要介绍了勾股定理的 365 种证明方法, 并按证法的 类型进行归纳、整理和总结, 让读者有一个全面而系统的了解.书中大多数证法用到的知识不 过初中几何的教学范围, 许多证法思路巧妙, 别具一格,对提高读者的几何素养大有裨益. 本书可以作为广大中学师生和数学爱好者的参考读物.
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(上卷)(基础篇)(直线型)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(上卷)(基础篇)(直线型)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
《物理如此简单:电磁学篇》是一本适合全学段中学生进行严肃阅读的物理学科普读物。人类很早就注意到生活中的电现象和磁现象,并留下了许多文字记载。电磁学继牛顿力学之后历经几个世纪的准备,终于在20世纪前叶成为经典物理学大厦的又一支柱。本书我们将探究电和磁的奥秘,让我们一起进入电和磁的神秘世界吧! 《物理如此简单:电磁学篇》针对中学低年级、中年级、高年级三个学段学生的阅读特点与需求,立足于中学物理知识,内化科学思维方法,重点培养和提升学生的物理学科素养,提升学生解决问题的能力,开阔学生的物理视野,促进学生科学思维水平的实质发展。 《物理如此简单:电磁学篇》可以作为中学生学习物理的重要课外读物,具有极高的科普及学习辅助价值。
如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书在保持第7版逻辑性强、语言流畅、易于自学、与时俱进等特色的基础上,对各篇章内容进行了调整和更新。全书共分4篇13章,*篇水分和矿质营养,内容包括植物的水分生理和矿质营养;第二篇物质代谢和能量转换,内容包括植物的光合作用、呼吸作用、植物同化物运输和次生代谢产物;第三篇植物的信号转导,内容有细胞信号转导、植物生长物质、植物光形态建成;第四篇植物的生长和发育,内容有植物的生长生理、植物的生殖生理、植物的成熟和衰老生理、植物对胁迫的应答与适应。与书一体化设计的数字课程内容有:术语解释、重要事件、知识拓展、专题讲座、网上自测、主题讨论、参考文献等。
《强基计划数学攻略》是一本针对准备参加强基计划的高中生的数学教材,涵盖了数学基础知识的主要内容。本书的主要内容包括数与方程、不等式、集合与逻辑、函数、三角比与三角函数、数列、微积分初步、平面向量与复数。 本书的特色在于,针对每个主题,书中都有大量的例题和习题,以及详细的解答和解析,可以帮助读者深入理解数学的基本概念和应用,同时提高数学解题能力。此外,本书还提供了一些实用的技巧和方法,帮助读者更好地掌握数学知识。 适合读者对象是需要系统地学习强基计划基础知识的学生和初学者。同时,本书也适合数学教师使用,作为课堂教学和辅导材料。 总之,《强基计划数学攻略》提供了全面而深入的数学知识体系,对于希望掌握数学基础知识和提高数学解题能力的读者来说,是一本非常有价值的参考书。
本书面向非专业人士、尤其是青少年群体,将硬核知识、技术方法与人文历史、人物故事有机融合,理顺人工智能纵向发展脉络与横向科学轮廓。作者以扎实的专业背景、流畅的文笔帮读者理顺人工智能的发展脉络,厘清人工智能的核心技术方法,帮读者看懂人工智能与其他学科交叉碰撞所引发的社会生活变化,从 成天下之才 的角度给青少年读者提供学习建议,树立其科学理想,端正其科学态度,培养其科学思维。每一位读者都可以开卷有益。 本书为第二版,专门添加为本书拍摄的配套视频资源,以二维码的形式供读者访问。本书适合对人工智能感兴趣的读者阅读参考。
本书探讨了三角形和圆形的几何结构,主要专注于欧氏理论的延伸并详细地研究了许多相关定理。在讨论的数百个定理和推论中,一些已经给出了完整的证明,另一些未证明的用以留作读者练习使用。 本书适合大、中学师生及数学爱好者学习和收藏。
本书是根据费曼教授在美国康奈尔大学所作的梅森哲讲座系列整理而成。物理学家是从直接从实验中找到自然律的吗?他们真的大胆地运用这些结果来探究未知并作出预言吗?或者他们只是发明这些定律并强加给现实呢?为了回答这些问题,费曼在书中概括了引力定律以及牛顿、麦克斯韦和爱因斯坦的伟大发现的共同主题,审视了作为自然的语言 数学与物理学的关系,探讨了守恒定律、对称性、过去与未来以及量子力学带来的概率和不确定性,*后还展望了新的定律。